Suppr超能文献

使用同步 EEG-fMRI 分离面孔知觉中意识和任务相关性的神经相关性。

Dissociating the Neural Correlates of Consciousness and Task Relevance in Face Perception Using Simultaneous EEG-fMRI.

机构信息

Institute of Medical Psychology and Systems Neuroscience, University of Münster, 48149 Münster, Germany

Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany.

出版信息

J Neurosci. 2021 Sep 15;41(37):7864-7875. doi: 10.1523/JNEUROSCI.2799-20.2021. Epub 2021 Jul 23.

Abstract

Current theories of visual consciousness disagree about whether it emerges during early stages of processing in sensory brain regions or later when a widespread frontoparietal network becomes involved. Moreover, disentangling conscious perception from task-related postperceptual processes (e.g., report) and integrating results across different neuroscientific methods remain ongoing challenges. The present study addressed these problems using simultaneous EEG-fMRI and a specific inattentional blindness paradigm with three physically identical phases in female and male human participants. In phase 1, participants performed a distractor task during which line drawings of faces and control stimuli were presented centrally. While some participants spontaneously noticed the faces in phase 1, others remained inattentionally blind. In phase 2, all participants were made aware of the task-irrelevant faces but continued the distractor task. In phase 3, the faces became task-relevant. Bayesian analysis of brain responses demonstrated that conscious face perception was most strongly associated with activation in fusiform gyrus (fMRI) as well as the N170 and visual awareness negativity (EEG). Smaller awareness effects were revealed in the occipital and prefrontal cortex (fMRI). Task-relevant face processing, on the other hand, led to strong, extensive activation of occipitotemporal, frontoparietal, and attentional networks (fMRI). In EEG, it enhanced early negativities and elicited a pronounced P3b component. Overall, we provide evidence that conscious visual perception is linked with early processing in stimulus-specific sensory brain areas but may additionally involve prefrontal cortex. In contrast, the strong activation of widespread brain networks and the P3b are more likely associated with task-related processes. How does our brain generate visual consciousness-the subjective experience of what it is like to see, for example, a face? To date, it is hotly debated whether it emerges early in sensory brain regions or later when a widespread frontoparietal network is activated. Here, we use simultaneous fMRI and EEG for high spatial and temporal resolution and demonstrate that conscious face perception is predominantly linked to early and occipitotemporal processes, but also prefrontal activity. Task-related processes (e.g., decision-making), on the other hand, elicit brain-wide activations including late and strong frontoparietal activity. These findings challenge numerous previous studies and highlight the importance of investigating the neural correlates of consciousness in the absence of task relevance.

摘要

当前关于视觉意识的理论存在分歧,有的认为它是在感觉大脑区域的早期处理阶段出现的,有的则认为它是在广泛的额顶网络参与后出现的。此外,将意识知觉与与任务相关的后知觉过程(例如报告)区分开来,并将不同神经科学方法的结果整合在一起,仍然是当前的挑战。本研究使用同步 EEG-fMRI 和一种特定的非注意盲范式,在女性和男性人类参与者中进行了三个物理上相同的阶段,解决了这些问题。在第一阶段,参与者执行了一项分心任务,在此期间,面的线条图和控制刺激在中央呈现。虽然一些参与者在第一阶段自发地注意到了这些面孔,而另一些则仍然处于非注意盲状态。在第二阶段,所有参与者都意识到了与任务无关的面孔,但仍继续执行分心任务。在第三阶段,这些面孔变得与任务相关。对大脑反应的贝叶斯分析表明,有意识的面孔知觉与梭状回(fMRI)以及 N170 和视觉意识负波(EEG)的激活最为相关。在 fMRI 中,在枕叶和前额叶皮层中发现了较小的意识效应。另一方面,与任务相关的面孔处理导致了枕颞、额顶和注意力网络的强烈、广泛激活(fMRI)。在 EEG 中,它增强了早期负性波,并引起了明显的 P3b 成分。总的来说,我们提供了证据表明,有意识的视觉感知与刺激特异性感觉大脑区域的早期处理有关,但可能还涉及前额叶皮层。相比之下,广泛的大脑网络的强烈激活和 P3b 更可能与与任务相关的过程有关。我们的大脑是如何产生视觉意识的——例如,主观体验到看到一张脸的感觉的?到目前为止,关于它是在感觉大脑区域早期出现,还是在广泛的额顶网络被激活后出现,这一问题仍存在激烈争论。在这里,我们使用同步 fMRI 和 EEG 进行高空间和时间分辨率的测量,并证明有意识的面孔知觉主要与早期和枕颞过程相关,但也与前额叶活动相关。另一方面,与任务相关的过程(例如决策)会引起包括晚期和强烈的额顶活动在内的全脑激活。这些发现挑战了许多先前的研究,并强调了在没有任务相关性的情况下研究意识的神经相关性的重要性。

相似文献

1
Dissociating the Neural Correlates of Consciousness and Task Relevance in Face Perception Using Simultaneous EEG-fMRI.
J Neurosci. 2021 Sep 15;41(37):7864-7875. doi: 10.1523/JNEUROSCI.2799-20.2021. Epub 2021 Jul 23.
2
Neural Signatures of Conscious Face Perception in an Inattentional Blindness Paradigm.
J Neurosci. 2015 Aug 5;35(31):10940-8. doi: 10.1523/JNEUROSCI.0145-15.2015.
3
Distinguishing the Neural Correlates of Perceptual Awareness and Postperceptual Processing.
J Neurosci. 2020 Jun 17;40(25):4925-4935. doi: 10.1523/JNEUROSCI.0120-20.2020. Epub 2020 May 14.
4
Differential Effects of Awareness and Task Relevance on Early and Late ERPs in a No-Report Visual Oddball Paradigm.
J Neurosci. 2020 Apr 1;40(14):2906-2913. doi: 10.1523/JNEUROSCI.2077-19.2020. Epub 2020 Mar 2.
6
Dissociating neural correlates of consciousness and task relevance during auditory processing.
Neuroimage. 2021 Mar;228:117712. doi: 10.1016/j.neuroimage.2020.117712. Epub 2020 Dec 31.
7
Isolating Neural Signatures of Conscious Speech Perception with a No-Report Sine-Wave Speech Paradigm.
J Neurosci. 2024 Feb 21;44(8):e0145232023. doi: 10.1523/JNEUROSCI.0145-23.2023.
8
Electrophysiological correlates of sustained conscious perception.
Sci Rep. 2024 May 8;14(1):10593. doi: 10.1038/s41598-024-61281-2.
9
ERP signatures of conscious and unconscious word and letter perception in an inattentional blindness paradigm.
Conscious Cogn. 2017 Sep;54:56-71. doi: 10.1016/j.concog.2017.04.009. Epub 2017 May 11.
10
Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
J Neurosci. 2018 Mar 7;38(10):2495-2504. doi: 10.1523/JNEUROSCI.2724-17.2018. Epub 2018 Feb 2.

引用本文的文献

1
Early ERPs dissociate subjectively nonconscious low- and high-level face processing.
Neurosci Conscious. 2025 Aug 19;2025(1):niaf025. doi: 10.1093/nc/niaf025. eCollection 2025.
2
Neural representation of consciously seen and unseen information.
Sci Rep. 2025 Mar 6;15(1):7888. doi: 10.1038/s41598-025-92490-y.
5
The influence of signal strength on conscious and nonconscious neural processing of emotional faces.
Neurosci Conscious. 2025 Feb 5;2025(1):niaf001. doi: 10.1093/nc/niaf001. eCollection 2025.
6
Acquisition and generalization of emotional and neural responses to faces associated with negative and positive feedback behaviours.
Front Neurosci. 2024 Aug 5;18:1399948. doi: 10.3389/fnins.2024.1399948. eCollection 2024.
7
The influence of feature-based attention and response requirements on ERP correlates of auditory awareness.
Neurosci Conscious. 2024 Jul 23;2024(1):niae031. doi: 10.1093/nc/niae031. eCollection 2024.
8
Electrophysiological correlates of sustained conscious perception.
Sci Rep. 2024 May 8;14(1):10593. doi: 10.1038/s41598-024-61281-2.
9
Moving in response to an unseen visual stimulus.
Clin Neurophysiol. 2024 Feb;158:92-102. doi: 10.1016/j.clinph.2023.12.009. Epub 2023 Dec 22.

本文引用的文献

1
Bifurcation in brain dynamics reveals a signature of conscious processing independent of report.
Nat Commun. 2021 Feb 19;12(1):1149. doi: 10.1038/s41467-021-21393-z.
2
Dissociating neural correlates of consciousness and task relevance during auditory processing.
Neuroimage. 2021 Mar;228:117712. doi: 10.1016/j.neuroimage.2020.117712. Epub 2020 Dec 31.
4
Visual awareness and the levels of processing hypothesis: A critical review.
Conscious Cogn. 2020 Oct;85:103022. doi: 10.1016/j.concog.2020.103022. Epub 2020 Sep 17.
5
Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence.
Nat Neurosci. 2020 Jul;23(7):788-799. doi: 10.1038/s41593-020-0660-4. Epub 2020 Jun 29.
6
Distinguishing the Neural Correlates of Perceptual Awareness and Postperceptual Processing.
J Neurosci. 2020 Jun 17;40(25):4925-4935. doi: 10.1523/JNEUROSCI.0120-20.2020. Epub 2020 May 14.
7
ERP and MEG correlates of visual consciousness: The second decade.
Conscious Cogn. 2020 Apr;80:102917. doi: 10.1016/j.concog.2020.102917. Epub 2020 Mar 16.
8
Conscious Processing and the Global Neuronal Workspace Hypothesis.
Neuron. 2020 Mar 4;105(5):776-798. doi: 10.1016/j.neuron.2020.01.026.
9
Differential Effects of Awareness and Task Relevance on Early and Late ERPs in a No-Report Visual Oddball Paradigm.
J Neurosci. 2020 Apr 1;40(14):2906-2913. doi: 10.1523/JNEUROSCI.2077-19.2020. Epub 2020 Mar 2.
10
What Is Wrong with the No-Report Paradigm and How to Fix It.
Trends Cogn Sci. 2019 Dec;23(12):1003-1013. doi: 10.1016/j.tics.2019.10.001. Epub 2019 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验