Centre for Research in Earth and Space Science (CRESS), York University, Toronto, Canada.
Department of Mathematics and Statistics, York University, Toronto, Canada.
Appl Spectrosc. 2021 Sep;75(9):1093-1113. doi: 10.1177/00037028211016892. Epub 2021 Jun 2.
One of the primary objectives of planetary exploration is the search for signs of life (past, present, or future). Formulating an understanding of the geochemical processes on planetary bodies may allow us to define the precursors for biological processes, thus providing insight into the evolution of past life on Earth and other planets, and perhaps a projection into future biological processes. Several techniques have emerged for detecting biomarker signals on an atomic or molecular level, including laser-induced breakdown spectroscopy (LIBS), Raman spectroscopy, laser-induced fluorescence (LIF) spectroscopy, and attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy, each of which addresses complementary aspects of the elemental composition, mineralogy, and organic characterization of a sample. However, given the technical challenges inherent to planetary exploration, having a sound understanding of the data provided from these technologies, and how the inferred insights may be used synergistically is critical for mission success. In this work, we present an in-depth characterization of a set of samples collected during a 28-day Mars analog mission conducted by the Austrian Space Forum in the Dhofar region of Oman. The samples were obtained under high-fidelity spaceflight conditions and by considering the geological context of the test site. The specimens were analyzed using the LIBS-Raman sensor, a prototype instrument for future exploration of Mars. We present the elemental quantification of the samples obtained from LIBS using a previously developed linear mixture model and validated using scanning electron microscopy energy dispersive spectroscopy. Moreover, we provide a full mineral characterization obtained using ultraviolet Raman spectroscopy and LIF, which was verified through ATR FT-IR. Lastly, we present possible discrimination of organics in the samples using LIF and time-resolved LIF. Each of these methods yields accurate results, with low errors in their predictive capabilities of LIBS (median relative error ranging from 4.5% to 16.2%), and degree of richness in subsequent inferences to geochemical and potential biochemical processes of the samples. The existence of such methods of inference and our ability to understand the limitations thereof is crucial for future planetary missions, not only to Mars and Moon but also for future exoplanetary exploration.
行星探索的主要目标之一是寻找生命的迹象(过去、现在或未来)。了解行星体上的地球化学过程可以帮助我们定义生物过程的前体,从而深入了解地球和其他行星上过去生命的演化,并对未来的生物过程进行预测。已经出现了几种用于在原子或分子水平上检测生物标志物信号的技术,包括激光诱导击穿光谱(LIBS)、拉曼光谱、激光诱导荧光(LIF)光谱和衰减全反射傅里叶变换红外(ATR FT-IR)光谱,每种技术都针对样品的元素组成、矿物学和有机特征的互补方面。然而,考虑到行星探索固有的技术挑战,深入了解这些技术提供的数据以及如何协同利用这些推断见解对于任务成功至关重要。在这项工作中,我们对在奥地利太空论坛在阿曼的佐法尔地区进行的为期 28 天的火星模拟任务中收集的一组样本进行了深入的表征。这些样本是在高保真度的空间飞行条件下,根据测试地点的地质背景获得的。使用 LIBS-Raman 传感器对样本进行了分析,LIBS-Raman 传感器是未来火星探索的原型仪器。我们使用先前开发的线性混合模型对 LIBS 获得的样品进行了元素定量,并使用扫描电子显微镜能量色散光谱进行了验证。此外,我们提供了使用紫外拉曼光谱和 LIF 获得的完整矿物特征,该特征通过 ATR FT-IR 进行了验证。最后,我们使用 LIF 和时间分辨 LIF 对样品中的有机物进行了可能的区分。这些方法中的每一种都能得到准确的结果,LIBS 的预测能力误差较低(中位数相对误差范围为 4.5%至 16.2%),并且对样品的地球化学和潜在生物化学过程的后续推断具有丰富的信息。这些推断方法的存在以及我们理解其局限性的能力对于未来的行星任务至关重要,不仅对于火星和月球,而且对于未来的系外行星探索也是如此。