University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain.
University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain.
Anal Chim Acta. 2022 May 29;1209:339003. doi: 10.1016/j.aca.2021.339003. Epub 2021 Aug 31.
The 2020s could be called, with little doubt, the "Mars decade". No other period in space exploration history has experienced such interest in placing orbiters, rovers and landers on the Red Planet. In 2021 alone, the Emirates' first Mars Mission (the Hope orbiter), the Chinese Tianwen-1 mission (orbiter, lander and rover), and NASA's Mars 2020 Perseverance rover reached Mars. The ExoMars mission Rosalind Franklin rover is scheduled for launch in 2022. Beyond that, several other missions are proposed or under development. Among these, MMX to Phobos and the very important Mars Sample Return can be cited. One of the key mission objectives of the Mars 2020 and ExoMars 2022 missions is the detection of traces of potential past or present life. This detection relies to a great extent on the analytical results provided by complementary spectroscopic techniques. The development of these novel instruments has been carried out in step with the analytical study of terrestrial analogue sites and materials, which serve to test the scientific capabilities of spectroscopic prototypes while providing crucial information to better understand the geological processes that could have occurred on Mars. Being directly involved in the development of three of the first Raman spectrometers to be validated for space exploration missions (Mars 2020/SuperCam, ExoMars/RLS and RAX/MMX), the present review summarizes some of the most relevant spectroscopy-based analyses of terrestrial analogues carried out over the past two decades. Therefore, the present work describes the analytical results gathered from the study of some of the most distinctive terrestrial analogues of Martian geological contexts, as well as the lessons learned mainly from ExoMars mission simulations conducted at representative analogue sites. Learning from the experience gained in the described studies, a general overview of the scientific outcome expected from the spectroscopic system developed for current and forthcoming planetary missions is provided.
21 世纪可以说是“火星十年”,这一点毋庸置疑。在太空探索史上,没有哪个时期像现在这样对在这颗红色星球上部署轨道飞行器、漫游车和着陆器有着如此浓厚的兴趣。仅在 2021 年,阿联酋的首个火星任务(希望号轨道飞行器)、中国的天问一号任务(轨道飞行器、着陆器和巡视器)和美国宇航局的火星 2020 毅力号漫游车就抵达了火星。ExoMars 任务罗莎琳德·富兰克林漫游车计划于 2022 年发射。除此之外,还有其他几个任务正在提议或开发中。其中,可以提到 MMX 对火卫一的探测任务和非常重要的火星样本返回任务。火星 2020 号和 ExoMars 2022 号任务的一个关键目标是探测潜在的过去或现在生命的痕迹。这种探测在很大程度上依赖于互补光谱技术提供的分析结果。这些新型仪器的开发与对地球模拟地点和材料的分析研究同步进行,这不仅可以测试光谱原型的科学能力,还可以提供关于火星上可能发生的地质过程的关键信息。作者直接参与了三个将在未来火星探索任务中得到验证的第一批拉曼光谱仪的开发(火星 2020/SuperCam、ExoMars/RLS 和 RAX/MMX),本综述总结了过去二十年中基于光谱分析对地球模拟物进行的一些最相关的分析。因此,本工作描述了从一些最具特色的火星地质环境的地球模拟物研究中收集到的分析结果,以及主要从在有代表性的模拟地点进行的 ExoMars 任务模拟中吸取的经验教训。从所描述的研究中吸取经验,对当前和即将到来的行星任务开发的光谱系统的预期科学成果进行了概述。