School of Medicine, Chang Gung University, Taoyuan, Taiwan.
Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan.
J Clin Psychiatry. 2021 Feb 23;82(2):19m13225. doi: 10.4088/JCP.19m13225.
Suicide is a priority health problem. Suicide assessment depends on imperfect clinician assessment with minimal ability to predict the risk of suicide. Machine learning/deep learning provides an opportunity to detect an individual at risk of suicide to a greater extent than clinician assessment. The present study aimed to use deep learning of structural magnetic resonance imaging (MRI) to create an algorithm for detecting suicidal ideation and suicidal attempts.
We recruited 4 groups comprising a total of 186 participants: 33 depressive patients with suicide attempt (SA), 41 depressive patients with suicidal ideation (SI), 54 depressive patients without suicidal thoughts (DP), and 58 healthy controls (HCs). The confirmation of depressive disorder, SA and SI was based on psychiatrists' diagnosis and Mini-International Neuropsychiatric Interview (MINI) interviews. In the generalized q-sampling imaging (GQI) dataset, indices of generalized fractional anisotropy (GFA), the isotropic value of the orientation distribution function (ISO), and normalized quantitative anisotropy (NQA) were separately trained in convolutional neural network (CNN)-based deep learning and DenseNet models.
From the results of 5-fold cross-validation, the best accuracies of the CNN classifier for predicting SA, SI, and DP against HCs were 0.916, 0.792, and 0.589, respectively. In SA-ISO, DenseNet outperformed the simple CNNs with a best accuracy from 5-fold cross-validation of 0.937. In SA-NQA, the best accuracy was 0.915.
The results showed that a deep learning method based on structural MRI can effectively detect individuals at different levels of suicide risk, from depression to suicidal ideation and attempted suicide. Further studies from different populations, larger sample sizes, and prospective follow-up studies are warranted to confirm the utility of deep learning methods for suicide prevention and intervention.
自杀是一个优先的健康问题。自杀评估取决于临床医生不完善的评估,预测自杀风险的能力有限。机器学习/深度学习为检测自杀风险个体提供了机会,其程度超过临床医生的评估。本研究旨在使用结构磁共振成像(MRI)的深度学习创建一种算法,以检测自杀意念和自杀企图。
我们招募了包括 186 名参与者在内的 4 组:33 名有自杀未遂史的抑郁症患者(SA),41 名有自杀意念的抑郁症患者(SI),54 名无自杀念头的抑郁症患者(DP)和 58 名健康对照者(HCs)。抑郁障碍、SA 和 SI 的确诊基于精神科医生的诊断和 Mini-国际神经精神访谈(MINI)访谈。在广义 q 采样成像(GQI)数据集,广义各向异性分数(GFA)、各向同性值的方向分布函数(ISO)和归一化定量各向异性(NQA)指数分别在基于卷积神经网络(CNN)的深度学习和 DenseNet 模型中进行训练。
5 折交叉验证的结果表明,CNN 分类器预测 SA、SI 和 DP 与 HCs 的最佳准确率分别为 0.916、0.792 和 0.589。在 SA-ISO 中,DenseNet 优于简单的 CNN,5 折交叉验证的最佳准确率为 0.937。在 SA-NQA 中,最佳准确率为 0.915。
结果表明,基于结构 MRI 的深度学习方法可以有效检测不同自杀风险水平的个体,从抑郁到自杀意念和自杀未遂。需要进一步开展来自不同人群、更大样本量和前瞻性随访研究,以证实深度学习方法在预防和干预自杀方面的效用。