Suppr超能文献

莫努匹韦通过 RNA 模板促进 SARS-CoV-2 突变。

Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template.

机构信息

Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.

Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for AIDS Research, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA.

出版信息

J Biol Chem. 2021 Jul;297(1):100770. doi: 10.1016/j.jbc.2021.100770. Epub 2021 May 11.

Abstract

The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue β-D-N-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.

摘要

严重急性呼吸综合征冠状病毒 2 的 RNA 依赖性 RNA 聚合酶是当前用于治疗 2019 年冠状病毒病的药物开发努力的重要靶点。莫努匹韦是一种广谱抗病毒药物,是核苷类似物β-D-N-羟基胞苷(NHC)的口服生物可利用前药。莫努匹韦或 NHC 可增加复制冠状病毒中的 G 到 A 和 C 到 U 的转换突变。这些突变频率的增加与抗病毒效果的增加有关;然而,尚未报道莫努匹韦诱导突变的生化数据。在这里,我们研究了活性化合物 NHC 5'-三磷酸(NHC-TP)对纯化的严重急性呼吸综合征冠状病毒 2 RNA 依赖性 RNA 聚合酶复合物的影响。天然核苷酸掺入的效率超过 NHC-TP 掺入模型 RNA 底物的效率,其顺序为 GTP(12,841)> ATP(424)> UTP(171)> CTP(30),表明 NHC-TP 主要与 CTP 竞争掺入。在 RNA 引物链中掺入单磷酸没有明显抑制 RNA 合成。当嵌入模板链时,NHC-单磷酸支持 NHC:G 和 NHC:A 碱基对的形成,效率相似。NHC:G 产物的延伸受到适度抑制,但较高的核苷酸浓度可以克服这种阻滞。相比之下,NHC:A 碱基对导致观察到的 G 到 A(G:NHC:A)或 C 到 U(C:G:NHC:A:U)突变。这些生化数据共同支持莫努匹韦的作用机制,主要基于通过模板链介导的 RNA 诱变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ea/8258986/dc5d70fc06b1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验