Suppr超能文献

基于日本护理标准术语的电子护理叙事记录自动分类。

Automatic Classification of Electronic Nursing Narrative Records Based on Japanese Standard Terminology for Nursing.

机构信息

Author Affiliations: Department of Biomedical Informatics (Ms Aoki and Dr Ohe), Department of Artificial Intelligence in Healthcare (Dr Shinohara), and The Center for Disease Biology and Integrative Medicine (Dr Imai), Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Healthcare Information Management, The University of Tokyo Hospital (Mr Yokota and Dr Ohe), Tokyo; and Department of Biomedical Informatics and Management, Faculty of Medicine, University of Tsukuba (Dr Kagawa), Ibaraki, Japan.

出版信息

Comput Inform Nurs. 2021 May 12;39(11):828-834. doi: 10.1097/CIN.0000000000000725.

Abstract

In Japan, nursing records are not easily put to secondary use because nursing documentation is not standardized. In recent years, electronic health records have necessitated the creation of Japanese nursing terminology. The purpose of this study was to develop and evaluate an automatic classification system for narrative nursing records using natural language processing technology and machine learning. We collected a week's worth of narrative nursing records from an academic hospital. The authors independently annotated the text data, dividing it into morphemes, the smallest meaningful unit in a language. During preprocessing when creating feature quantities, we used a Japanese tokenizer, MeCab, an open-source morphological parser, and the bag-of-words model. A support vector machine was adopted as a classifier for machine learning. The accuracy was 0.96 and 0.86 on the training set and test set, respectively, and the F value was 0.82. Our findings provide useful information regarding the development of an automatic classification system for Japanese nursing records using nursing terminology and natural language processing techniques.

摘要

在日本,护理记录不容易被二次利用,因为护理文档没有标准化。近年来,电子健康记录需要创建日本护理术语。本研究的目的是使用自然语言处理技术和机器学习开发和评估一种用于叙述性护理记录的自动分类系统。我们从一家学术医院收集了一周的叙述性护理记录。作者独立地对文本数据进行了注释,将其划分为语素,这是语言中最小的有意义单位。在创建特征量的预处理过程中,我们使用了一个日语标记器 MeCab、一个开源形态分析器和词袋模型。支持向量机被用作机器学习的分类器。在训练集和测试集上的准确率分别为 0.96 和 0.86,F 值为 0.82。我们的研究结果为使用护理术语和自然语言处理技术开发日本护理记录自动分类系统提供了有用的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验