Suppr超能文献

采用控制喂养研究评估蛋白质、碳水化合物和脂肪摄入的潜在基于代谢组学的生物标志物。

Evaluation of potential metabolomic-based biomarkers of protein, carbohydrate and fat intakes using a controlled feeding study.

机构信息

Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA.

Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.

出版信息

Eur J Nutr. 2021 Dec;60(8):4207-4218. doi: 10.1007/s00394-021-02577-1. Epub 2021 May 15.

Abstract

PURPOSE

Objective biomarkers of dietary exposure are needed to establish reliable diet-disease associations. Unfortunately, robust biomarkers of macronutrient intakes are scarce. We aimed to assess the utility of serum, 24-h urine and spot urine high-dimensional metabolites for the development of biomarkers of daily intake of total energy, protein, carbohydrate and fat, and the percent of energy from these macronutrients (%E).

METHODS

A 2-week controlled feeding study mimicking the participants' habitual diets was conducted among 153 postmenopausal women from the Women's Health Initiative (WHI). Fasting serum metabolomic profiles were analyzed using a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for aqueous metabolites and a direct-injection-based quantitative lipidomics platform. Urinary metabolites were analyzed using H nuclear magnetic resonance (NMR) spectroscopy at 800 MHz and by untargeted gas chromatography-mass spectrometry (GC-MS). Variable selection was performed to build prediction models for each dietary variable.

RESULTS

The highest cross-validated multiple correlation coefficients (CV-R) for protein intake (%E) and carbohydrate intake (%E) using metabolites only were 36.3 and 37.1%, respectively. With the addition of established dietary biomarkers (doubly labeled water for energy and urinary nitrogen for protein), the CV-R reached 55.5% for energy (kcal/d), 52.0 and 45.0% for protein (g/d, %E), 55.9 and 37.0% for carbohydrate (g/d, %E).

CONCLUSION

Selected panels of serum and urine metabolites, without the inclusion of doubly labeled water and urinary nitrogen biomarkers, give a reliable and robust prediction of daily intake of energy from protein and carbohydrate.

摘要

目的

需要客观的膳食暴露生物标志物来建立可靠的饮食-疾病关联。不幸的是,宏量营养素摄入量的稳健生物标志物却很少。我们旨在评估血清、24 小时尿液和随机尿液高维代谢物在开发总能量、蛋白质、碳水化合物和脂肪的日常摄入量以及这些宏量营养素供能百分比(%E)的生物标志物方面的效用。

方法

在妇女健康倡议(WHI)的 153 名绝经后妇女中进行了为期 2 周的对照喂养研究,该研究模拟了参与者的习惯性饮食。使用靶向液相色谱-串联质谱(LC-MS/MS)测定法分析空腹血清代谢组学图谱,用于水相代谢物,以及基于直接进样的定量脂质组学平台。使用 800 MHz 的 H 核磁共振(NMR)光谱和非靶向气相色谱-质谱(GC-MS)分析尿液代谢物。进行变量选择以建立针对每种膳食变量的预测模型。

结果

仅使用代谢物预测蛋白质摄入量(%E)和碳水化合物摄入量(%E)的最高交叉验证多重相关系数(CV-R)分别为 36.3%和 37.1%。通过添加已建立的膳食生物标志物(双标记水用于能量和尿氮用于蛋白质),能量(千卡/天)的 CV-R 达到 55.5%,蛋白质(克/天,%E)和碳水化合物(克/天,%E)的 CV-R 分别为 52.0%和 45.0%。

结论

在不包含双标记水和尿氮生物标志物的情况下,选择血清和尿液代谢物的特定组合,可以可靠且稳健地预测蛋白质和碳水化合物的日常能量摄入量。

相似文献

6
Comparing metabolite profiles of habitual diet in serum and urine.比较血清和尿液中习惯性饮食的代谢物谱。
Am J Clin Nutr. 2016 Sep;104(3):776-89. doi: 10.3945/ajcn.116.135301. Epub 2016 Aug 10.

引用本文的文献

5
Reply to W Willett.回复W·威利特。
J Nutr. 2023 Dec;153(12):3615-3616. doi: 10.1016/j.tjnut.2023.10.001. Epub 2023 Oct 5.

本文引用的文献

4
Urinary biomarkers of dietary intake: a review.膳食摄入的尿生物标志物:综述。
Nutr Rev. 2020 May 1;78(5):364-381. doi: 10.1093/nutrit/nuz048.
7
Use of Metabolomics in Improving Assessment of Dietary Intake.代谢组学在改善膳食摄入评估中的应用。
Clin Chem. 2018 Jan;64(1):82-98. doi: 10.1373/clinchem.2017.272344. Epub 2017 Oct 16.
8
Gas chromatography - mass spectrometry data processing made easy.气相色谱-质谱数据处理变得轻松。
J Chromatogr A. 2017 Jun 23;1503:57-64. doi: 10.1016/j.chroma.2017.04.052. Epub 2017 Apr 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验