Suppr超能文献

探索 2 年内精神病发病的特定预测因素:决策树模型。

Exploring specific predictors of psychosis onset over a 2-year period: A decision-tree model.

机构信息

Department of Social Studies, Faculty of Social Sciences, University of Stavanger, Stavanger, Norway.

TIPS - Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway.

出版信息

Early Interv Psychiatry. 2022 Apr;16(4):363-370. doi: 10.1111/eip.13175. Epub 2021 May 15.

Abstract

AIM

The fluctuating symptoms of clinical high risk for psychosis hamper conversion prediction models. Exploring specific symptoms using machine-learning has proven fruitful in accommodating this challenge. The aim of this study is to explore specific predictors and generate atheoretical hypotheses of onset using a close-monitoring, machine-learning approach.

METHODS

Study participants, N = 96, mean age 16.55 years, male to female ratio 46:54%, were recruited from the Prevention of Psychosis Study in Rogaland, Norway. Participants were assessed using the Structured Interview for Psychosis Risk Syndromes (SIPS) at 13 separate assessment time points across 2 years, yielding 247 specific scores. A machine-learning decision-tree analysis (i) examined potential SIPS predictors of psychosis conversion and (ii) hierarchically ranked predictors of psychosis conversion.

RESULTS

Four out of 247 specific SIPS symptom scores were significant: (i) reduced expression of emotion at baseline, (ii) experience of emotions and self at 5 months, (iii) perceptual abnormalities/hallucinations at 3 months and (iv) ideational richness at 6 months. No SIPS symptom scores obtained after 6 months of follow-up predicted psychosis.

CONCLUSIONS

Study findings suggest that early negative symptoms, particularly those observable by peers and arguably a risk factor for social exclusion, were predictive of psychosis. Self-expression and social behaviour might prove relevant entry points for early intervention in psychosis and psychosis risk. Testing study results in larger samples and at other sites is warranted.

摘要

目的

精神病临床高危症状的波动性阻碍了转换预测模型的建立。使用机器学习探索特定症状已被证明在解决这一挑战方面非常有效。本研究旨在探索特定的预测指标,并使用密切监测、机器学习的方法得出发病的理论假设。

方法

研究参与者共 96 名,平均年龄 16.55 岁,男女比例为 46:54%,均来自挪威罗加兰精神病预防研究。参与者在 2 年内的 13 个不同评估时间点接受了精神病风险综合征结构化访谈(SIPS)评估,共产生了 247 个特定分数。使用机器学习决策树分析(i)检查精神病转换的潜在 SIPS 预测指标,(ii)对精神病转换的预测指标进行层次排名。

结果

247 个特定 SIPS 症状评分中有 4 个具有统计学意义:(i)基线时情感表达减少,(ii)5 个月时体验情绪和自我,(iii)3 个月时感知异常/幻觉,(iv)6 个月时观念丰富。在 6 个月的随访后,没有 SIPS 症状评分可以预测精神病。

结论

研究结果表明,早期的阴性症状,特别是那些可以被同伴观察到的症状,且可能是社会排斥的风险因素,与精神病有关。自我表达和社会行为可能是精神病和精神病风险早期干预的切入点。在更大的样本和其他地点检验研究结果是有必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验