Department of Social Studies, Faculty of Social Sciences, University of Stavanger, Stavanger, Norway.
TIPS - Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway.
Early Interv Psychiatry. 2022 Apr;16(4):363-370. doi: 10.1111/eip.13175. Epub 2021 May 15.
The fluctuating symptoms of clinical high risk for psychosis hamper conversion prediction models. Exploring specific symptoms using machine-learning has proven fruitful in accommodating this challenge. The aim of this study is to explore specific predictors and generate atheoretical hypotheses of onset using a close-monitoring, machine-learning approach.
Study participants, N = 96, mean age 16.55 years, male to female ratio 46:54%, were recruited from the Prevention of Psychosis Study in Rogaland, Norway. Participants were assessed using the Structured Interview for Psychosis Risk Syndromes (SIPS) at 13 separate assessment time points across 2 years, yielding 247 specific scores. A machine-learning decision-tree analysis (i) examined potential SIPS predictors of psychosis conversion and (ii) hierarchically ranked predictors of psychosis conversion.
Four out of 247 specific SIPS symptom scores were significant: (i) reduced expression of emotion at baseline, (ii) experience of emotions and self at 5 months, (iii) perceptual abnormalities/hallucinations at 3 months and (iv) ideational richness at 6 months. No SIPS symptom scores obtained after 6 months of follow-up predicted psychosis.
Study findings suggest that early negative symptoms, particularly those observable by peers and arguably a risk factor for social exclusion, were predictive of psychosis. Self-expression and social behaviour might prove relevant entry points for early intervention in psychosis and psychosis risk. Testing study results in larger samples and at other sites is warranted.
精神病临床高危症状的波动性阻碍了转换预测模型的建立。使用机器学习探索特定症状已被证明在解决这一挑战方面非常有效。本研究旨在探索特定的预测指标,并使用密切监测、机器学习的方法得出发病的理论假设。
研究参与者共 96 名,平均年龄 16.55 岁,男女比例为 46:54%,均来自挪威罗加兰精神病预防研究。参与者在 2 年内的 13 个不同评估时间点接受了精神病风险综合征结构化访谈(SIPS)评估,共产生了 247 个特定分数。使用机器学习决策树分析(i)检查精神病转换的潜在 SIPS 预测指标,(ii)对精神病转换的预测指标进行层次排名。
247 个特定 SIPS 症状评分中有 4 个具有统计学意义:(i)基线时情感表达减少,(ii)5 个月时体验情绪和自我,(iii)3 个月时感知异常/幻觉,(iv)6 个月时观念丰富。在 6 个月的随访后,没有 SIPS 症状评分可以预测精神病。
研究结果表明,早期的阴性症状,特别是那些可以被同伴观察到的症状,且可能是社会排斥的风险因素,与精神病有关。自我表达和社会行为可能是精神病和精神病风险早期干预的切入点。在更大的样本和其他地点检验研究结果是有必要的。