Suppr超能文献

早期精神病筛选器 (EPS):使用机器学习对 SIPS 的定量验证。

The Early Psychosis Screener (EPS): Quantitative validation against the SIPS using machine learning.

机构信息

TeleSage, Inc., 201 East Rosemary St., Chapel Hill, NC 27514, USA.

New York State Psychiatric Institute, 1051 Riverside Drive, Unit 31, New York, NY 10032, USA.

出版信息

Schizophr Res. 2018 Jul;197:516-521. doi: 10.1016/j.schres.2017.11.030. Epub 2018 Jan 19.

Abstract

Machine learning techniques were used to identify highly informative early psychosis self-report items and to validate an early psychosis screener (EPS) against the Structured Interview for Psychosis-risk Syndromes (SIPS). The Prodromal Questionnaire-Brief Version (PQ-B) and 148 additional items were administered to 229 individuals being screened with the SIPS at 7 North American Prodrome Longitudinal Study sites and at Columbia University. Fifty individuals were found to have SIPS scores of 0, 1, or 2, making them clinically low risk (CLR) controls; 144 were classified as clinically high risk (CHR) (SIPS 3-5) and 35 were found to have first episode psychosis (FEP) (SIPS 6). Spectral clustering analysis, performed on 124 of the items, yielded two cohesive item groups, the first mostly related to psychosis and mania, the second mostly related to depression, anxiety, and social and general work/school functioning. Items within each group were sorted according to their usefulness in distinguishing between CLR and CHR individuals using the Minimum Redundancy Maximum Relevance procedure. A receiver operating characteristic area under the curve (AUC) analysis indicated that maximal differentiation of CLR and CHR participants was achieved with a 26-item solution (AUC=0.899±0.001). The EPS-26 outperformed the PQ-B (AUC=0.834±0.001). For screening purposes, the self-report EPS-26 appeared to differentiate individuals who are either CLR or CHR approximately as well as the clinician-administered SIPS. The EPS-26 may prove useful as a self-report screener and may lead to a decrease in the duration of untreated psychosis. A validation of the EPS-26 against actual conversion is underway.

摘要

机器学习技术被用于识别具有高度信息量的早期精神病自我报告项目,并根据精神病风险综合征结构化访谈 (SIPS) 对早期精神病筛查器 (EPS) 进行验证。 Prodromal Questionnaire-Brief Version (PQ-B) 和 148 个附加项目被施用于在 7 个北美前驱纵向研究站点和哥伦比亚大学接受 SIPS 筛查的 229 个人。发现 50 个人的 SIPS 分数为 0、1 或 2,使他们处于临床低风险 (CLR) 对照组;144 人被归类为临床高风险 (CHR) (SIPS 3-5),35 人被诊断为首发精神病 (FEP) (SIPS 6)。对 124 个项目进行的光谱聚类分析产生了两个凝聚的项目组,第一个主要与精神病和躁狂有关,第二个主要与抑郁、焦虑、社会和一般工作/学校功能有关。根据最小冗余最大相关性程序,对每个组中的项目进行排序,以区分 CLR 和 CHR 个体。接收器操作特征曲线下面积 (AUC) 分析表明,区分 CLR 和 CHR 参与者的最佳区分是使用 26 项解决方案 (AUC=0.899±0.001)。EPS-26 的表现优于 PQ-B (AUC=0.834±0.001)。出于筛查目的,自我报告的 EPS-26 似乎与临床医生管理的 SIPS 一样能够区分 CLR 或 CHR 个体。EPS-26 可能作为自我报告筛查器很有用,并可能导致未治疗精神病的持续时间缩短。正在对 EPS-26 进行针对实际转化的验证。

相似文献

9
Predicting psychosis in a general adolescent psychiatric sample.在一般青少年精神科样本中预测精神病。
Schizophr Res. 2014 Sep;158(1-3):1-6. doi: 10.1016/j.schres.2014.06.028. Epub 2014 Jul 9.

引用本文的文献

2
Machine minds: Artificial intelligence in psychiatry.机器思维:精神病学中的人工智能
Ind Psychiatry J. 2024 Aug;33(Suppl 1):S265-S267. doi: 10.4103/ipj.ipj_157_23. Epub 2024 Feb 15.

本文引用的文献

5
Psychosis risk screening: a systematic review.精神病风险筛查:一项系统综述。
Schizophr Res. 2014 Sep;158(1-3):11-8. doi: 10.1016/j.schres.2014.06.036. Epub 2014 Jul 14.
10
Identifying men at ultra high risk of psychosis in a prison population.在监狱人群中识别有极高患精神病风险的男性。
Schizophr Res. 2012 Apr;136(1-3):1-6. doi: 10.1016/j.schres.2012.01.025. Epub 2012 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验