Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong.
Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
J Biol Chem. 2021 Jan-Jun;296:100735. doi: 10.1016/j.jbc.2021.100735. Epub 2021 May 13.
RNA polymerase II (Pol II) surveils the genome, pausing as it encounters DNA lesions and base modifications and initiating signals for DNA repair among other important regulatory events. Recent work suggests that Pol II pauses at 5-carboxycytosine (5caC), an epigenetic modification of cytosine, because of a specific hydrogen bond between the carboxyl group of 5caC and a specific residue in fork loop 3 of Pol II. This hydrogen bond compromises productive NTP binding and slows down elongation. Apart from this specific interaction, the carboxyl group of 5caC can potentially interact with numerous charged residues in the cleft of Pol II. However, it is not clear how other interactions between Pol II and 5caC contribute to pausing. In this study, we use Markov state models (a type of kinetic network models) built from extensive molecular dynamics simulations to comprehensively study the impact of 5caC on Pol II translocation. We describe two translocation intermediates with specific interactions that prevent the template base from loading into the Pol II active site. In addition to the previously observed state with 5caC constrained by fork loop 3, we discovered a new intermediate state with a hydrogen bond between 5caC and fork loop 2. Surprisingly, we find that 5caC may curb translocation by suppressing kinking of the helix bordering the active site (the bridge helix) because its high flexibility is critical to translocation. Our work provides new insights into how epigenetic modifications of genomic DNA can modulate Pol II translocation, inducing pauses in transcription.
RNA 聚合酶 II(Pol II)监测基因组,在遇到 DNA 损伤和碱基修饰时会暂停,并启动 DNA 修复等重要调控事件的信号。最近的研究表明,Pol II 在 5-羧基胞嘧啶(5caC)处暂停,5caC 是胞嘧啶的一种表观遗传修饰,因为 5caC 的羧基基团与 Pol II 叉环 3 中的特定残基之间存在特定的氢键。这种氢键会影响 NTP 的有效结合并减缓延伸。除了这种特定的相互作用之外,5caC 的羧基基团还可以与 Pol II 裂隙中的许多带电残基潜在相互作用。然而,目前尚不清楚 Pol II 与 5caC 之间的其他相互作用如何导致暂停。在这项研究中,我们使用来自广泛分子动力学模拟的马尔可夫状态模型(一种动力学网络模型)全面研究 5caC 对 Pol II 易位的影响。我们描述了两种具有特定相互作用的易位中间体,这些相互作用阻止了模板碱基进入 Pol II 的活性部位。除了之前观察到的由叉环 3 约束的 5caC 状态外,我们还发现了一种新的中间体状态,其中 5caC 与叉环 2 之间存在氢键。令人惊讶的是,我们发现 5caC 可能通过抑制与活性部位相邻的螺旋的扭曲(桥螺旋)来抑制易位,因为其高灵活性对于易位至关重要。我们的工作提供了新的见解,即基因组 DNA 的表观遗传修饰如何调节 Pol II 易位,从而在转录过程中产生暂停。