Suppr超能文献

MSMBuilder:生物分子动力学的统计模型。

MSMBuilder: Statistical Models for Biomolecular Dynamics.

作者信息

Harrigan Matthew P, Sultan Mohammad M, Hernández Carlos X, Husic Brooke E, Eastman Peter, Schwantes Christian R, Beauchamp Kyle A, McGibbon Robert T, Pande Vijay S

机构信息

Department of Chemistry, Stanford University, Stanford, California.

Program in Biophysics, Stanford University, Stanford, California.

出版信息

Biophys J. 2017 Jan 10;112(1):10-15. doi: 10.1016/j.bpj.2016.10.042.

Abstract

MSMBuilder is a software package for building statistical models of high-dimensional time-series data. It is designed with a particular focus on the analysis of atomistic simulations of biomolecular dynamics such as protein folding and conformational change. MSMBuilder is named for its ability to construct Markov state models (MSMs), a class of models that has gained favor among computational biophysicists. In addition to both well-established and newer MSM methods, the package includes complementary algorithms for understanding time-series data such as hidden Markov models and time-structure based independent component analysis. MSMBuilder boasts an easy to use command-line interface, as well as clear and consistent abstractions through its Python application programming interface. MSMBuilder was developed with careful consideration for compatibility with the broader machine learning community by following the design of scikit-learn. The package is used primarily by practitioners of molecular dynamics, but is just as applicable to other computational or experimental time-series measurements.

摘要

MSMBuilder是一个用于构建高维时间序列数据统计模型的软件包。它的设计特别侧重于对生物分子动力学的原子模拟进行分析,如蛋白质折叠和构象变化。MSMBuilder因其构建马尔可夫状态模型(MSM)的能力而得名,这类模型在计算生物物理学家中颇受青睐。除了成熟的和较新的MSM方法外,该软件包还包括用于理解时间序列数据的互补算法,如隐马尔可夫模型和基于时间结构的独立成分分析。MSMBuilder拥有易于使用的命令行界面,并且通过其Python应用程序编程接口具有清晰一致的抽象。MSMBuilder在开发过程中充分考虑了与更广泛的机器学习社区的兼容性,遵循了scikit-learn的设计。该软件包主要由分子动力学从业者使用,但同样适用于其他计算或实验时间序列测量。

相似文献

4
Markov models for the elucidation of allosteric regulation.用于阐明变构调节的马尔可夫模型。
Philos Trans R Soc Lond B Biol Sci. 2018 Jun 19;373(1749). doi: 10.1098/rstb.2017.0178.
9
Markov state models of biomolecular conformational dynamics.生物分子构象动力学的马尔可夫状态模型。
Curr Opin Struct Biol. 2014 Apr;25:135-44. doi: 10.1016/j.sbi.2014.04.002. Epub 2014 May 16.

引用本文的文献

5
Unveiling hidden reaction kinetics of carbon dioxide in supercritical aqueous solutions.揭示超临界水溶液中二氧化碳的隐藏反应动力学。
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2406356121. doi: 10.1073/pnas.2406356121. Epub 2024 Dec 30.

本文引用的文献

2
HTMD: High-Throughput Molecular Dynamics for Molecular Discovery.HTMD:用于分子发现的高通量分子动力学。
J Chem Theory Comput. 2016 Apr 12;12(4):1845-52. doi: 10.1021/acs.jctc.6b00049. Epub 2016 Mar 16.
4
EMMA: A Software Package for Markov Model Building and Analysis.EMMA:用于马尔可夫模型构建与分析的软件包。
J Chem Theory Comput. 2012 Jul 10;8(7):2223-38. doi: 10.1021/ct300274u. Epub 2012 Jun 18.
5
Variational Approach to Molecular Kinetics.分子动力学的变分方法
J Chem Theory Comput. 2014 Apr 8;10(4):1739-52. doi: 10.1021/ct4009156. Epub 2014 Mar 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验