Department of Translational Medical Science, College of Medicine, Texas A&M Universsity, Houston, TX, USA; Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, USA.
Biology Department, Muhlenberg College, Allentown, PA, USA.
Dev Biol. 2021 Sep;477:37-48. doi: 10.1016/j.ydbio.2021.05.004. Epub 2021 May 13.
Ras is the most commonly mutated oncogene in humans and uses three oncogenic effectors: Raf, PI3K, and RalGEF activation of Ral. Understanding the importance of RalGEF>Ral signaling in cancer is hampered by the paucity of knowledge about their function in animal development, particularly in cell movements. We found that mutations that disrupt function of RalGEF or Ral enhance migration phenotypes of mutants for genes with established roles in cell migration. We used as a model the migration of the canal associated neurons (CANs), and validated our results in HSN cell migration, neurite guidance, and general animal locomotion. These functions of RalGEF and Ral are specific to their control of Ral signaling output rather than other published functions of these proteins. In this capacity Ral functions cell autonomously as a permissive developmental signal. In contrast, we observed Ras, the canonical activator of RalGEF>Ral signaling in cancer, to function as an instructive signal. Furthermore, we unexpectedly identified a function for the close Ras relative, Rap1, consistent with activation of RalGEF>Ral. These studies define functions of RalGEF>Ral, Rap1 and Ras signaling in morphogenetic processes that fashion the nervous system. We have also defined a model for studying how small GTPases partner with downstream effectors. Taken together, this analysis defines novel molecules and relationships in signaling networks that control cell movements during development of the nervous system.
Ras 是人类中最常见的突变致癌基因,它利用三种致癌效应器:Raf、PI3K 和 RalGEF 激活 Ral。由于对其在动物发育中的功能知之甚少,特别是在细胞运动中,因此理解 RalGEF>Ral 信号在癌症中的重要性受到了阻碍。我们发现,破坏 RalGEF 或 Ral 功能的突变会增强在细胞迁移中具有既定作用的基因的突变体的迁移表型。我们使用与 Canal 相关神经元 (CANs) 的迁移作为模型,并在 HSN 细胞迁移、神经突导向和一般动物运动中验证了我们的结果。这些 RalGEF 和 Ral 的功能是特异性的,它们控制 Ral 信号输出,而不是这些蛋白质的其他已发表功能。在这种能力中,Ral 作为一种允许的发育信号发挥细胞自主功能。相比之下,我们观察到 Ras(RalGEF>Ral 信号在癌症中的典型激活剂)作为指导信号发挥作用。此外,我们出人意料地发现了 Ras 的密切相对物 Rap1 的功能,这与 RalGEF>Ral 的激活一致。这些研究定义了 RalGEF>Ral、Rap1 和 Ras 信号在塑造神经系统的形态发生过程中的功能。我们还定义了一个研究小 GTPase 如何与下游效应器伙伴合作的模型。总之,该分析定义了在神经系统发育过程中控制细胞运动的信号网络中的新型分子和关系。