Suppr超能文献

雷帕霉素靶蛋白(Rheb)-TORC1 信号轴作为发育检查点发挥作用。

The Rheb-TORC1 signaling axis functions as a developmental checkpoint.

机构信息

Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA.

Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA

出版信息

Development. 2020 Mar 2;147(5):dev181727. doi: 10.1242/dev.181727.

Abstract

In many eukaryotes, the small GTPase Rheb functions as a switch to toggle activity of TOR complex 1 (TORC1) between anabolism and catabolism, thus controlling lifespan, development and autophagy. Our CRISPR-generated, fluorescently tagged endogenous RHEB-1 and DAF-15/Raptor are expressed ubiquitously and localize to lysosomes. LET-363/TOR and DAF-15/Raptor are required for development beyond the third larval stage (L3). We observed that deletion of RHEB-1 similarly conferred L3 arrest. Unexpectedly, robust RNAi-mediated depletion of TORC1 components caused arrest at stages prior to L3. Accordingly, conditional depletion of endogenous DAF-15/Raptor in the soma revealed that TORC1 is required at each stage of the life cycle to progress to the next stage. Reversal of DAF-15 depletion permits arrested animals to recover to continue development. Our results are consistent with TORC1 functioning as a developmental checkpoint that governs the decision of the animal to progress through development.

摘要

在许多真核生物中,小分子 GTP 酶 Rheb 作为一个开关,在合成代谢和分解代谢之间调节 TOR 复合物 1(TORC1)的活性,从而控制寿命、发育和自噬。我们通过 CRISPR 产生的、荧光标记的内源性 RHEB-1 和 DAF-15/Raptor 广泛表达,并定位于溶酶体。LET-363/TOR 和 DAF-15/Raptor 对于第三龄幼虫(L3)之后的发育是必需的。我们观察到,RHEB-1 的缺失同样导致 L3 停滞。出乎意料的是,强烈的 RNAi 介导的 TORC1 成分耗竭导致 L3 之前的阶段停滞。因此,在体细胞中条件性耗尽内源性 DAF-15/Raptor 表明 TORC1 在生命周期的每个阶段都需要前进到下一个阶段。DAF-15 耗竭的逆转允许被阻止的动物恢复继续发育。我们的结果与 TORC1 作为发育检查点的功能一致,该检查点控制动物通过发育的决策。

相似文献

1
The Rheb-TORC1 signaling axis functions as a developmental checkpoint.
Development. 2020 Mar 2;147(5):dev181727. doi: 10.1242/dev.181727.
2
Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion.
Mol Cell. 2014 Jan 23;53(2):209-20. doi: 10.1016/j.molcel.2013.12.004. Epub 2014 Jan 2.
3
Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase.
Oncogene. 2006 Oct 16;25(48):6361-72. doi: 10.1038/sj.onc.1209882.
4
Evolutionary Conservation of the Components in the TOR Signaling Pathways.
Biomolecules. 2017 Nov 1;7(4):77. doi: 10.3390/biom7040077.
5
Knockdown of neuronal DAF-15/Raptor promotes healthy aging in C. elegans.
J Genet Genomics. 2024 May;51(5):507-516. doi: 10.1016/j.jgg.2023.11.002. Epub 2023 Nov 10.
7
A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.
PLoS Genet. 2008 Feb;4(2):e24. doi: 10.1371/journal.pgen.0040024.
8
Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans.
Nature. 2009 Feb 5;457(7230):726-30. doi: 10.1038/nature07583. Epub 2008 Dec 14.
9
RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
Cell Signal. 2014 Mar;26(3):461-7. doi: 10.1016/j.cellsig.2013.11.035. Epub 2013 Dec 3.

引用本文的文献

1
CDK-4 regulates nucleolar size and metabolism at the cost of late-life fitness in C. elegans.
Heredity (Edinb). 2025 May 18. doi: 10.1038/s41437-025-00769-7.
2
Biased regulation of protein synthesis and hypoxic death by a conditional raptor mutation.
Curr Biol. 2025 Jun 9;35(11):2567-2582.e5. doi: 10.1016/j.cub.2025.04.040. Epub 2025 May 7.
3
Fasting shapes chromatin architecture through an mTOR/RNA Pol I axis.
Nat Cell Biol. 2024 Nov;26(11):1903-1917. doi: 10.1038/s41556-024-01512-w. Epub 2024 Sep 19.
5
A simple strategy for addition of degron tags to endogenous genes harboring prior insertions of fluorescent protein.
MicroPubl Biol. 2022 Aug 9;2022. doi: 10.17912/micropub.biology.000622. eCollection 2022.
6
The mIAA7 degron improves auxin-mediated degradation in Caenorhabditiselegans.
G3 (Bethesda). 2022 Sep 30;12(10). doi: 10.1093/g3journal/jkac222.
7
Identifying the Caenorhabditis elegans vulval transcriptome.
G3 (Bethesda). 2022 May 30;12(6). doi: 10.1093/g3journal/jkac091.
9
The TORC1 phosphoproteome in reveals roles in transcription and autophagy.
iScience. 2022 Mar 31;25(5):104186. doi: 10.1016/j.isci.2022.104186. eCollection 2022 May 20.
10

本文引用的文献

1
Ras-Dependent Cell Fate Decisions Are Reinforced by the RAP-1 Small GTPase in .
Genetics. 2018 Dec;210(4):1339-1354. doi: 10.1534/genetics.118.301601. Epub 2018 Sep 26.
2
Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning.
Cell Rep. 2018 Sep 4;24(10):2669-2681.e5. doi: 10.1016/j.celrep.2018.08.011.
3
Twenty-five years of mTOR: Uncovering the link from nutrients to growth.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11818-11825. doi: 10.1073/pnas.1716173114. Epub 2017 Oct 25.
4
TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.
Cell. 2017 Sep 21;171(1):10-13. doi: 10.1016/j.cell.2017.08.019. Epub 2017 Sep 6.
5
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.
Genetics. 2017 Feb;205(2):775-785. doi: 10.1534/genetics.116.194282. Epub 2016 Dec 14.
6
Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor.
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4620-9. doi: 10.1073/pnas.1512156113. Epub 2016 Jul 25.
8
Small GTPases.
WormBook. 2018 Aug 16;2018:1-65. doi: 10.1895/wormbook.1.67.2.
9
The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans.
Development. 2015 Dec 15;142(24):4374-84. doi: 10.1242/dev.129635. Epub 2015 Nov 9.
10
TOR Complexes and the Maintenance of Cellular Homeostasis.
Trends Cell Biol. 2016 Feb;26(2):148-159. doi: 10.1016/j.tcb.2015.10.003. Epub 2015 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验