Department of Structural Biology, Stanford University School of Medicine, Stanford, Calif; Program in Immunology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy Research at Stanford University, Stanford, Calif.
Department of Rheumatology and Immunology, Bern University Hospital, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
J Allergy Clin Immunol. 2021 Oct;148(4):1049-1060. doi: 10.1016/j.jaci.2021.03.050. Epub 2021 May 12.
Anaphylaxis represents one of the most severe and fatal forms of allergic reactions. Like most other allergies, it is caused by activation of basophils and mast cells by allergen-mediated cross-linking of IgE bound to its high-affinity receptor, FcεRI, on the cell surface. The systemic release of soluble mediators induces an inflammatory cascade, rapidly causing symptoms with peak severity in minutes to hours after allergen exposure. Primary treatment for anaphylaxis consists of immediate intramuscular administration of adrenaline.
While adrenaline alleviates life-threatening symptoms of an anaphylactic reaction, there are currently no disease-modifying interventions available. We sought to develop potent and fast-acting IgE inhibitors with the potential to rapidly terminate acute allergic reactions.
Using affinity maturation by yeast display and structure-guided molecular engineering, we generated 3 optimized disruptive IgE inhibitors based on designed ankyrin repeat proteins and assessed their ability to actively remove IgE from allergic effector cells in vitro as well as in vivo in mice.
The engineered IgE inhibitors rapidly dissociate preformed IgE:FcεRI complexes, terminate IgE-mediated signaling in preactivated human blood basophils in vitro, and shut down preinitiated allergic reactions and anaphylaxis in mice in vivo.
Fast-acting disruptive IgE inhibitors demonstrate the feasibility of developing kinetically optimized inhibitors for the treatment of anaphylaxis and the rapid desensitization of allergic individuals.
过敏反应是最严重和最致命的过敏反应形式之一。与大多数其他过敏反应一样,它是由过敏原介导的 IgE 与高亲和力受体 FcεRI 交联,激活嗜碱性粒细胞和肥大细胞引起的。可溶性介质的系统性释放诱导炎症级联反应,在过敏原暴露后几分钟到几小时内迅速导致症状达到高峰严重程度。过敏反应的主要治疗方法是立即肌内注射肾上腺素。
虽然肾上腺素可以缓解过敏反应的危及生命的症状,但目前尚无疾病修饰干预措施。我们试图开发具有潜在能力的有效和快速作用的 IgE 抑制剂,以快速终止急性过敏反应。
我们使用酵母展示的亲和力成熟和基于结构的分子工程,基于设计的锚蛋白重复蛋白生成了 3 种优化的破坏性 IgE 抑制剂,并评估了它们在体外和体内从过敏效应细胞中主动去除 IgE 的能力。在小鼠中。
工程化的 IgE 抑制剂可快速解离预先形成的 IgE:FcεRI 复合物,在体外终止预先激活的人血嗜碱性粒细胞中的 IgE 介导的信号转导,并在体内终止预先启动的过敏反应和过敏反应。在小鼠中。
快速作用的破坏性 IgE 抑制剂证明了开发用于治疗过敏反应和快速脱敏过敏个体的动力学优化抑制剂的可行性。