Suppr超能文献

PharmSD:一种基于人工智能的新型固体分散体配方设计计算平台。

PharmSD: A novel AI-based computational platform for solid dispersion formulation design.

作者信息

Dong Jie, Gao Hanlu, Ouyang Defang

机构信息

State Key Laboratory of Quality Research in Chinese Medicine, ICMS, University of Macau, China.

出版信息

Int J Pharm. 2021 Jul 15;604:120705. doi: 10.1016/j.ijpharm.2021.120705. Epub 2021 May 13.

Abstract

Solid dispersion is an effective way to improve the dissolution and oral bioavailability of water-insoluble drugs. To obtain an effective solid dispersion formulation, researchers need to evaluate a series of important properties of the designed formulation, including in vitro dissolution and physical stability of solid dispersion. It is usually time-consuming and labor-intensive to explore these properties by traditional experimental methods. However, the development of machine learning technology provides a powerful way to solve such problems. By using advanced machine learning algorithms, we established a series of robust models and finally formed a systematic strategy to assist the formulation design. Based on these works, we developed a new formulation prediction platform of solid dispersion: PharmSD. This platform provides efficient functionalities for the prediction of physical stability, dissolution type and dissolution rate of solid dispersion independently. Then, a virtual screening pipeline can be produced by considering those prediction results as a whole, which enables users to filter different kinds of drug-polymer combinations in various experimental situations and figure out which combination could form the best formulation. Moreover, it also provides two tools that enable researchers to evaluate the application domain of models and calculate the similarity of dissolution curves. PharmSD is expected to be the first freely available web-based platform that is fully designed for the formulation design of solid dispersion driven by machine learning. We hope this platform could provide a powerful solution to assist the formulation design in the related research area. It is available at: http://pharmsd.computpharm.org.

摘要

固体分散体是提高水不溶性药物溶出度和口服生物利用度的有效方法。为了获得有效的固体分散体制剂,研究人员需要评估所设计制剂的一系列重要性质,包括固体分散体的体外溶出度和物理稳定性。用传统实验方法探索这些性质通常既耗时又费力。然而,机器学习技术的发展为解决此类问题提供了有力途径。通过使用先进的机器学习算法,我们建立了一系列稳健的模型,并最终形成了一种系统策略来辅助制剂设计。基于这些工作,我们开发了一种新的固体分散体制剂预测平台:PharmSD。该平台独立提供了用于预测固体分散体物理稳定性、溶出类型和溶出速率的高效功能。然后,通过将这些预测结果作为一个整体来考虑,可以生成一个虚拟筛选流程,这使得用户能够在各种实验情况下筛选不同种类的药物 - 聚合物组合,并找出哪种组合可以形成最佳制剂。此外,它还提供了两个工具,使研究人员能够评估模型的应用领域并计算溶出曲线的相似度。PharmSD有望成为首个完全基于机器学习驱动的、免费可用的固体分散体制剂设计网络平台。我们希望这个平台能够为相关研究领域的制剂设计提供一个有力的解决方案。可通过以下网址访问:http://pharmsd.computpharm.org。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验