Suppr超能文献

智能配方:使用KNIME的用于复方药物优化和稳定性预测的人工智能驱动网络平台。

Smart Formulation: AI-Driven Web Platform for Optimization and Stability Prediction of Compounded Pharmaceuticals Using KNIME.

作者信息

Grigoryan Artur, Helfrich Stefan, Lequeux Valentin, Lapras Benjamine, Marchand Chloé, Merienne Camille, Bruno Fabien, Mazet Roseline, Pirot Fabrice

机构信息

Fripharm®, Pharmacy Department, Groupe Hospitalier Centre Edouard Herriot, Hospices Civils de Lyon, 5, Place d'Arsonval, F-69437 Lyon, France.

KNIME GmbH, Reichenaustr. 11, DE-78467 Konstanz, Germany.

出版信息

Pharmaceuticals (Basel). 2025 Aug 21;18(8):1240. doi: 10.3390/ph18081240.

Abstract

: is an artificial intelligence-based platform designed to predict the Beyond Use Dates (BUDs) of compounded oral solid dosage forms. The study aims to develop a decision-support tool for pharmacists by integrating molecular, formulation, and environmental parameters to assist in optimizing the stability of extemporaneous preparations. : A tree ensemble regression model was trained using a curated dataset of 55 experimental BUD values collected from the Stabilis database. Each formulation was encoded with molecular descriptors, excipient composition, packaging type, and storage conditions. The model was implemented using the KNIME platform, allowing the integration of cheminformatics and machine learning workflows. After training, the model was used to predict BUDs for 3166 APIs under various formulation and storage scenarios. : The analysis revealed a significant impact of excipient type, number, and environmental conditions on API stability. APIs with lower LogP values generally exhibited greater stability, particularly when formulated with a single excipient. Excipients such as cellulose, silica, sucrose, and mannitol were associated with improved stability, whereas HPMC and lactose contributed to faster degradation. The use of two excipients instead of one frequently resulted in reduced BUDs, possibly due to moisture redistribution or phase separation effects. : represents a valuable contribution to computational pharmaceutics, bridging theoretical formulation design with practical compounding needs. The platform offers a scalable, cost-effective alternative to traditional stability testing and is already available for use by healthcare professionals. Its implementation in hospital and community pharmacies may help mitigate drug shortages, support formulation standardization, and improve patient care. Future developments will focus on real-time stability monitoring and adaptive learning for enhanced precision.

摘要

:是一个基于人工智能的平台,旨在预测复方口服固体制剂的有效期(BUDs)。该研究旨在通过整合分子、制剂和环境参数,为药剂师开发一种决策支持工具,以协助优化临时制剂的稳定性。:使用从Stabilis数据库收集的55个实验BUD值的精选数据集训练了一个树集成回归模型。每个制剂都用分子描述符、辅料组成、包装类型和储存条件进行编码。该模型使用KNIME平台实现,允许整合化学信息学和机器学习工作流程。训练后,该模型用于预测3166种活性成分在各种制剂和储存场景下的有效期。:分析表明辅料类型、数量和环境条件对活性成分稳定性有显著影响。LogP值较低的活性成分通常表现出更高的稳定性,特别是当与单一辅料配制时。纤维素、二氧化硅、蔗糖和甘露醇等辅料与稳定性提高有关,而羟丙基甲基纤维素和乳糖则导致更快降解。使用两种辅料而非一种辅料通常会导致有效期缩短,这可能是由于水分重新分布或相分离效应。:对计算药剂学做出了宝贵贡献,将理论制剂设计与实际配制需求联系起来。该平台为传统稳定性测试提供了一种可扩展、经济高效的替代方案,并且医疗保健专业人员已经可以使用。其在医院和社区药房的实施可能有助于缓解药品短缺、支持制剂标准化并改善患者护理。未来的发展将集中在实时稳定性监测和自适应学习以提高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75bd/12389346/390d5203af2c/pharmaceuticals-18-01240-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验