Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
Fungal Genet Biol. 2021 Jul;152:103568. doi: 10.1016/j.fgb.2021.103568. Epub 2021 May 13.
Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.
绿僵菌是一种重要的昆虫病原物种,也是节肢动物-真菌相互作用研究的模式生物。该真菌拥有多样化的未被探索的次生代谢物生物合成基因簇,这些基因簇在宿主相互作用和作为腐生物种在土壤中生存时,可能发挥着多样化的作用。在这里,我们探索了绿僵菌基因组中发现的一种不寻常的肉碱酰基转移酶结构域包含的高度还原的聚酮合酶。通过在构巢曲霉中的异源表达,获得了两种新的聚酮化合物,分别命名为 BAA 和 BAB,以及一种已知的聚酮化合物[(2Z,4E,6E)-辛-2,4,6-三烯二酸]。在模式节肢动物家蚕幼虫的血腔中注射最丰富的化合物(BAA),并未诱导死亡或明显的改变,这表明该化合物可能不具有杀虫活性。此外,还评估了这些分子在多微生物相互作用中的潜在作用。使用不同的真菌物种进行最低抑菌浓度测定实验表明,BAA 和 BAB 不会改变新生隐球菌的生长,而 BAA 对酿酒酵母表现出较弱的抗真菌活性。出乎意料的是,与对照条件相比,这些化合物增加了白色念珠菌的生长。此外,BAA 可以减轻氟康唑对白色念珠菌的杀菌作用。尽管这些化合物在绿僵菌生命周期中的确切作用尚不清楚,但所描述的结果增加了对绿僵菌属产生的次生代谢物的复杂性。此外,据我们所知,这些是首次从丝状真菌中分离出的能够促进另一种真菌生长的聚酮化合物。