Suppr超能文献

SARS 病毒进入抑制剂作用机制的结构基础。

Structural Basis for the Understanding of Entry Inhibitors against SARS Viruses.

机构信息

Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India-835215.

出版信息

Curr Med Chem. 2022;29(4):666-681. doi: 10.2174/0929867328666210514122418.

Abstract

Outbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARSCoV- 2) initiated in Wuhan city, China, in December 2019 and continued to spread Internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the disease and contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutininand has only 70% similarity to SAmediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related viral diseases, including COVID-19. It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at the S1/S2 subunit interface in the S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and open scope for the new drug discovery process targeting SARS-related virus entry into the host cell.

摘要

2019 年 12 月,严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)在中国武汉市引发的疫情继续在国际上蔓延,世界卫生组织宣布构成大流行威胁。截至 2021 年 3 月 10 日,全球已确诊病例达 1.18 亿例,死亡 260 万例。在没有特效抗病毒药物的情况下,对症治疗和物理隔离仍然是控制疾病和传染的选择。最近对抗病毒药物的临床试验突出了一些有前途的化合物,如乌米非韦(血凝素,与介导融合的抑制剂仅有 70%的相似性)、瑞德西韦(RdRp 核苷抑制剂)和法匹拉韦(RdRp 抑制剂)。世界卫生组织启动了一项针对多种有前途的类似物的跨国临床试验,作为对抗 SARS 感染的潜在治疗方法。这种情况需要采用整体方法来发明安全和特效的药物,作为预防和治疗 SARS 相关病毒疾病(包括 COVID-19)的方法。值得注意的是,世界各地的研究人员一直在尽力应对这场危机,并产生了广泛而有前途的文献资料。它开辟了一个范围,并允许在分子水平上理解病毒进入。基于结构的方法可以揭示病毒进入的分子水平理解。配体分析和参与氨基酸残基之间的非共价相互作用是描绘结构解释的关键信息。对 SARS 病毒进入宿主细胞的结构研究将揭示设计类似进入抑制剂的药物的可能策略。基于结构的方法在 3D 分子水平上展示了细节。它显示了 SARS-CoV-2 刺突相互作用的特异性,它使用人血管紧张素转换酶 2(ACE2)作为进入的受体,而人类蛋白酶完成病毒融合和感染的过程。3D 结构研究揭示了存在两个单位,即 S1 和 S2。S1 称为受体结合域(RBD),负责与宿主(ACE2)相互作用,而 S2 单位参与病毒和细胞膜的融合。TMPRSS2 介导 SARS-CoV-2 S 蛋白中 S1/S2 亚单位界面的切割,导致病毒融合。与 S1 结合相关的构象差异改变 ACE2 相互作用并抑制病毒融合。总的来说,详细的 3D 结构研究有助于理解病毒与宿主因子相互作用的 3D 结构基础,并为针对 SARS 相关病毒进入宿主细胞的新药发现过程开辟了范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验