Suppr超能文献

分裂光适体作为核酸的探测工具。

Split light up aptamers as a probing tool for nucleic acids.

作者信息

Gerasimova Yulia V, Nedorezova Daria D, Kolpashchikov Dmitry M

机构信息

University of Central Florida, Chemistry Department, 4111 Libra Drive, Physical Sciences 255, Orlando, FL 32816-2366, United States.

Laboratory of Molecular Robotics and Biosensor Materials, ChemBio Cluster, SCAMT Institute, ITMO University, 9 Lomonosova Str., Saint Petersburg 191002, Russian Federation.

出版信息

Methods. 2022 Jan;197:82-88. doi: 10.1016/j.ymeth.2021.05.008. Epub 2021 May 13.

Abstract

Aptamers that bind non-fluorescent dyes and increase their fluorescence can be converted to fluorescent sensors. Here, we discuss and provide guidance for the design of split (binary) light up aptameric sensors (SLAS) for nucleic acid analysis. SLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. The two strands hybridize to the analyzed DNA or RNA sequence and form a dye-binding pocket, followed by dye binding, and increase in its fluorescence. SLAS can detect nucleic acids in a cost-efficient label-free format since it does not require conjugation of organic dyes with nucleic acids. SLAS design is preferable over monolith fluorescent sensors due to simpler assay optimization and improved selectivity. RNA-based SLAS can be expressed in cells and used for intracellular monitoring and imaging biological molecules.

摘要

能够结合非荧光染料并增强其荧光的适配体可转化为荧光传感器。在此,我们讨论并为用于核酸分析的分裂(二元)点亮适配体传感器(SLAS)的设计提供指导。SLAS由两条RNA或DNA链以及作为缓冲液成分添加的荧光有机染料组成。这两条链与被分析的DNA或RNA序列杂交,形成一个染料结合口袋,随后染料结合并使其荧光增强。由于SLAS不需要有机染料与核酸共轭,因此它能够以经济高效的无标记形式检测核酸。由于分析优化更简单且选择性提高,SLAS设计优于整体式荧光传感器。基于RNA的SLAS可在细胞中表达,并用于细胞内监测和生物分子成像。

相似文献

1
Split light up aptamers as a probing tool for nucleic acids.
Methods. 2022 Jan;197:82-88. doi: 10.1016/j.ymeth.2021.05.008. Epub 2021 May 13.
2
Binary (Split) Light-up Aptameric Sensors.
Angew Chem Int Ed Engl. 2021 Mar 1;60(10):4988-4999. doi: 10.1002/anie.201914919. Epub 2020 Oct 8.
3
Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures.
Chembiochem. 2016 Sep 2;17(17):1589-92. doi: 10.1002/cbic.201600323. Epub 2016 Jul 15.
4
A highly efficient Baby Spinach-based minimal modified sensor (BSMS) for nucleic acid analysis.
Org Biomol Chem. 2019 Aug 14;17(30):7222-7227. doi: 10.1039/c9ob01414d. Epub 2019 Jul 22.
5
Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons.
Anal Chem. 2019 Feb 19;91(4):2667-2671. doi: 10.1021/acs.analchem.8b03964. Epub 2019 Feb 4.
6
"Second-generation" fluorogenic RNA-based sensors.
Methods. 2019 May 15;161:24-34. doi: 10.1016/j.ymeth.2019.01.008. Epub 2019 Jan 17.
7
A light-up fluorescence assay for tumor cell detection based on bifunctional split aptamers.
Analyst. 2018 Jul 23;143(15):3579-3585. doi: 10.1039/c8an01008k.
9
Binary malachite green aptamer for fluorescent detection of nucleic acids.
J Am Chem Soc. 2005 Sep 14;127(36):12442-3. doi: 10.1021/ja0529788.
10
Single-Molecule Kinetic Investigation of Cocaine-Dependent Split-Aptamer Assembly.
Anal Chem. 2018 Nov 6;90(21):12964-12970. doi: 10.1021/acs.analchem.8b03637. Epub 2018 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验