Suppr超能文献

用于在室温下高度选择性识别DNA和RNA的分裂型菠菜适配体

Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures.

作者信息

Kikuchi Nanami, Kolpashchikov Dmitry M

机构信息

Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.

出版信息

Chembiochem. 2016 Sep 2;17(17):1589-92. doi: 10.1002/cbic.201600323. Epub 2016 Jul 15.

Abstract

Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.

摘要

设计并测试了用于核酸荧光分析的分裂菠菜适配体(SSA)探针。在SSA设计中,两条RNA或RNA/DNA链与特定的核酸分析物杂交,并形成一个低荧光3,5-二氟-4-羟基苄叉咪唑啉酮(DFHBI)染料的结合位点,这导致荧光增强高达270倍。与现有技术的荧光探针相比,SSA的主要优点是选择性高:即使在室温下,在存在单碱基错配分析物的情况下,它也只会产生背景荧光。因此,SSA是一种在环境温度下进行核酸无标记分析的有前途的工具。

相似文献

1
Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures.
Chembiochem. 2016 Sep 2;17(17):1589-92. doi: 10.1002/cbic.201600323. Epub 2016 Jul 15.
2
A highly efficient Baby Spinach-based minimal modified sensor (BSMS) for nucleic acid analysis.
Org Biomol Chem. 2019 Aug 14;17(30):7222-7227. doi: 10.1039/c9ob01414d. Epub 2019 Jul 22.
3
Photophysics of DFHBI bound to RNA aptamer Baby Spinach.
Sci Rep. 2021 Apr 1;11(1):7356. doi: 10.1038/s41598-021-85091-y.
4
Split light up aptamers as a probing tool for nucleic acids.
Methods. 2022 Jan;197:82-88. doi: 10.1016/j.ymeth.2021.05.008. Epub 2021 May 13.
5
Characterization of the Photophysical Behavior of DFHBI Derivatives: Fluorogenic Molecules that Illuminate the Spinach RNA Aptamer.
J Phys Chem B. 2019 Mar 21;123(11):2536-2545. doi: 10.1021/acs.jpcb.8b11166. Epub 2019 Mar 12.
6
Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells.
Sci Rep. 2015 Nov 27;5:17295. doi: 10.1038/srep17295.
7
Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers.
RNA. 2016 Dec;22(12):1884-1892. doi: 10.1261/rna.056226.116. Epub 2016 Oct 24.
8
Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons.
Anal Chem. 2019 Feb 19;91(4):2667-2671. doi: 10.1021/acs.analchem.8b03964. Epub 2019 Feb 4.
9
Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging.
J Am Chem Soc. 2013 Dec 18;135(50):19033-8. doi: 10.1021/ja411060p. Epub 2013 Dec 10.
10
Spinach RNA aptamer detects lead(II) with high selectivity.
Chem Commun (Camb). 2015 May 28;51(43):9034-7. doi: 10.1039/c5cc01526j.

引用本文的文献

1
An RNA origami robot that traps and releases a fluorescent aptamer.
Sci Adv. 2024 Mar 22;10(12):eadk1250. doi: 10.1126/sciadv.adk1250. Epub 2024 Mar 20.
2
Detection of SARS-CoV-2 RNA Using a DNA Aptamer Mimic of Green Fluorescent Protein.
ACS Chem Biol. 2022 Apr 15;17(4):840-853. doi: 10.1021/acschembio.1c00893. Epub 2022 Mar 26.
3
Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques.
Anal Chem. 2021 Jan 12;93(1):198-214. doi: 10.1021/acs.analchem.0c04364. Epub 2020 Nov 4.
5
From fluorescent proteins to fluorogenic RNAs: Tools for imaging cellular macromolecules.
Protein Sci. 2019 Aug;28(8):1374-1386. doi: 10.1002/pro.3632. Epub 2019 May 11.
6
Split Green Fluorescent Proteins: Scope, Limitations, and Outlook.
Annu Rev Biophys. 2019 May 6;48:19-44. doi: 10.1146/annurev-biophys-051013-022846. Epub 2019 Feb 20.
7
Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons.
Anal Chem. 2019 Feb 19;91(4):2667-2671. doi: 10.1021/acs.analchem.8b03964. Epub 2019 Feb 4.
8
Divide and Control: Comparison of Split and Switch Hybridization Sensors.
ChemistrySelect. 2017 Jul 3;2(19):5427-5431. doi: 10.1002/slct.201701179. Epub 2017 Jul 4.
9
A Fluorescent Split Aptamer for Visualizing RNA-RNA Assembly In Vivo.
ACS Synth Biol. 2017 Sep 15;6(9):1710-1721. doi: 10.1021/acssynbio.7b00059. Epub 2017 May 26.
10
Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.
Chem Soc Rev. 2017 May 22;46(10):2824-2843. doi: 10.1039/c6cs00675b.

本文引用的文献

1
Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay.
Nucleic Acids Res. 2016 Jun 2;44(10):e94. doi: 10.1093/nar/gkw117. Epub 2016 Mar 2.
2
iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications.
Nucleic Acids Res. 2016 Apr 7;44(6):2491-500. doi: 10.1093/nar/gkw083. Epub 2016 Mar 1.
3
Light-up fluorophore--DNA aptamer pair for label-free turn-on aptamer sensors.
Chem Commun (Camb). 2016 Mar 14;52(21):4041-4. doi: 10.1039/c5cc08816j.
4
5
Current covalent modification methods for detecting RNA in fixed and living cells.
Methods. 2016 Apr 1;98:18-25. doi: 10.1016/j.ymeth.2015.11.016. Epub 2015 Nov 23.
7
Segmented GFP-like aptamer probes for functional imaging of viral genome trafficking.
Virus Res. 2015 Dec 2;210:291-7. doi: 10.1016/j.virusres.2015.08.023. Epub 2015 Aug 29.
8
Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances.
Biosensors (Basel). 2015 Jun 18;5(2):337-63. doi: 10.3390/bios5020337.
9
Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
Methods Mol Biol. 2015;1316:87-103. doi: 10.1007/978-1-4939-2730-2_8.
10
Spinach RNA aptamer detects lead(II) with high selectivity.
Chem Commun (Camb). 2015 May 28;51(43):9034-7. doi: 10.1039/c5cc01526j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验