Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States.
Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , United States.
Anal Chem. 2018 Nov 6;90(21):12964-12970. doi: 10.1021/acs.analchem.8b03637. Epub 2018 Oct 16.
Aptamers are short nucleic-acid biopolymers selected to have high affinity and specificity for protein or small-molecule target analytes. Aptamers can be engineered into split-aptamer biosensors comprising two nucleic acid strands that coassemble as they bind to a target, resulting in a large signal change from attached molecular probes (e.g., molecular beacons). The kinetics of split-aptamer assembly and their dependence on target recognition are largely unknown; knowledge of these kinetics could help in design and optimization of split-aptamer biosensors. In this work, we measure assembly kinetics of cocaine-dependent split-aptamer molecules using single-molecule fluorescence imaging. Assembly is monitored between a DNA strand tethered to a glass substrate and solutions containing the other strand tagged with a fluorescent label, with varying concentrations of the cocaine analyte. Dissociation rates are measured by tracking individual molecules and measuring their bound lifetimes. Dissociation-time distributions are biexponential, possibly indicating different folded states of the aptamer. The dissociation rate of only the longer-lived complex decreases with cocaine concentration, suggesting that cocaine stabilizes the long-lived aptamer complex. The variation in the slow dissociation rate with cocaine concentration is well described with an equilibrium-binding model, where the dissociation rate approaches a saturation limit consistent with the dissociation-equilibrium constant for cocaine-binding to the split aptamer. This single-molecule methodology provides a sensitive readout of cocaine-binding based on the dissociation kinetics of the split aptamer, allowing one to distinguish target-dependent aptamer assembly from background assembly. This methodology could be used to study other systems where target association affects the stability of aptamer duplexes.
适体是经过筛选得到的短核酸生物聚合物,对蛋白质或小分子靶分析物具有高亲和力和特异性。适体可以被设计成包含两条核酸链的分裂适体生物传感器,当它们与靶标结合时,这两条核酸链共同组装,从而导致附着的分子探针(例如分子信标)发生大的信号变化。分裂适体组装的动力学及其对靶标识别的依赖性在很大程度上是未知的;了解这些动力学可以帮助设计和优化分裂适体生物传感器。在这项工作中,我们使用单分子荧光成像测量可卡因依赖的分裂适体分子的组装动力学。通过跟踪单个分子并测量它们的结合寿命,监测与玻璃基底相连的 DNA 链与含有用荧光标记标记的另一条链的溶液之间的组装。通过跟踪单个分子并测量它们的结合寿命,来测量解离速率。解离时间分布是双指数的,可能表明适体的不同折叠状态。只有长寿命复合物的解离速率随可卡因浓度的降低而降低,这表明可卡因稳定了长寿命的适体复合物。慢解离速率随可卡因浓度的变化可以用平衡结合模型很好地描述,其中解离速率接近与可卡因结合到分裂适体的解离平衡常数一致的饱和极限。这种单分子方法提供了基于分裂适体解离动力学的可卡因结合的灵敏读数,允许人们区分靶标依赖性适体组装与背景组装。该方法可用于研究其他系统,其中靶标缔合影响适体双链体的稳定性。