Environmental Science Department, University of Arizona, Tucson, AZ, 85721, United States.
Environmental Science Department, University of Arizona, Tucson, AZ, 85721, United States.
Chemosphere. 2021 Oct;281:130829. doi: 10.1016/j.chemosphere.2021.130829. Epub 2021 May 10.
Fluid-fluid interfacial adsorption has been demonstrated to be an important retention process for per and polyfluoroalkyl substances (PFAS) in porous media with air or non-aqueous phase liquids (NAPLs) present. The objective of this study was to characterize the influence of PFAS molecular structure on air-water interfacial adsorption in electrolyte solutions. Measured and literature-reported surface-tension data sets were aggregated to generate the largest compilation of interfacial adsorption coefficients measured in aqueous solutions comprising environmentally representative ionic strengths. The surface activities and interfacial adsorption coefficients (K) exhibited chain length trends, with greater surface activities and larger K values corresponding to longer chain length. The impact of multiple-component PFAS solutions on the surface activity of a select PFAS was a function of the respective surface activities and concentrations. Quantitative structure-property relationship analysis (QSPR) employing a single molecular descriptor (molar volume) was used successfully to characterize the impact of PFAS molecular structure on air-water interfacial adsorption. A previously reported QSPR model based on PFAS data generated for deionized-water solutions was updated to include more than 60 different PFAS, comprising all head-group types and a wide variety of tail structures. The QSPR model developed for PFAS in electrolyte solution compared favorably to the model developed for deionized water. Additionally, the magnitude of ionic strength for non-zero ionic strength systems was determined to have relatively minimal impact on interfacial adsorption coefficients. The new QSPR model is therefore anticipated to be representative for a wide variety of PFAS and for a wide range of ionic compositions.
在存在空气或非水相液体 (NAPL) 的多孔介质中,已经证明流体-流体界面吸附是多氟和全氟烷基物质 (PFAS) 的重要保留过程。本研究的目的是表征 PFAS 分子结构对电解质溶液中空气-水界面吸附的影响。将测量和文献报道的表面张力数据集进行汇总,以生成在包含环境代表性离子强度的水溶液中测量的最大界面吸附系数数据集。表面活性和界面吸附系数 (K) 表现出链长趋势,更长的链长对应着更大的表面活性和更大的 K 值。多组分 PFAS 溶液对特定 PFAS 表面活性的影响取决于各自的表面活性和浓度。采用单一分子描述符(摩尔体积)的定量结构-性质关系分析 (QSPR) 成功地用于表征 PFAS 分子结构对空气-水界面吸附的影响。先前基于去离子水溶液中生成的 PFAS 数据报告的 QSPR 模型已更新,以包括 60 多种不同的 PFAS,涵盖所有的头基类型和各种不同的尾部结构。在电解质溶液中开发的 PFAS 的 QSPR 模型与在去离子水中开发的模型相比表现良好。此外,对于非零离子强度系统,离子强度的大小被确定为对界面吸附系数的影响相对较小。因此,预计新的 QSPR 模型将代表各种 PFAS 和广泛的离子组成。