Suppr超能文献

阿尔茨海默病神经心理学数据分析中的关联规则学习

Association rule learning in neuropsychological data analysis for Alzheimer's disease.

作者信息

Happawana Keith A, Diamond Bruce J

机构信息

Department of Psychology, William Paterson University, Wayne, New Jersey, USA.

出版信息

J Neuropsychol. 2022 Mar;16(1):116-130. doi: 10.1111/jnp.12252. Epub 2021 May 16.

Abstract

Efficient methods of analysis readily available for clinicians continue to be limited within neuropsychological assessment at the raw data level. Here, a novel approach for generating predictive response patterns and analysing neuropsychological raw data is offered. In order to assess the usefulness of association rule learning as an analysis tool for neuropsychological raw data, Frequent Pattern Growth (FP-Growth) was used to mine patterns from the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery (CERAD-NB) database. Complete assessment data for 84 post-mortem confirmed Alzheimer's disease (AD) cases and 294 age, race, and education matched controls were analysed across baseline and one-year follow-up using FP-Growth, for the purpose of assessing the clinical utility of a finer analysis at the raw data level and the feasibility of predicting response patterns for clinical/control groups. Output from FP-Growth, in terms of the number of frequent itemsets retained across both evaluation timepoints, was discernable between controls, mild, and moderate to severe Alzheimer's disease cases (p < .001, and η  = .488). Patterns within raw data scores, both in terms of frequent itemsets and predictive association rules, appear to be differentiable across groups within neuropsychological analysis, which indicates that FP-Growth is applicable as a supplementary analysis tool for neuropsychological assessment by means of offering an additional level of data analysis, predictive item response capabilities, and aiding in clinical decision making.

摘要

在神经心理学评估中,临床医生可随时使用的高效分析方法在原始数据层面仍然有限。在此,我们提供了一种生成预测反应模式并分析神经心理学原始数据的新方法。为了评估关联规则学习作为神经心理学原始数据分析工具的实用性,我们使用频繁模式增长算法(FP-Growth)从阿尔茨海默病神经心理成套测验注册库(CERAD-NB)数据库中挖掘模式。我们使用FP-Growth对84例尸检确诊的阿尔茨海默病(AD)病例以及294例年龄、种族和教育程度匹配的对照的完整评估数据进行了基线和一年随访分析,目的是评估在原始数据层面进行更精细分析的临床实用性以及预测临床/对照组反应模式的可行性。从FP-Growth的输出结果来看,在两个评估时间点保留的频繁项集数量方面,对照组、轻度和中度至重度阿尔茨海默病病例之间存在显著差异(p <.001,η = 0.488)。在神经心理学分析中,原始数据分数中的模式,无论是频繁项集还是预测关联规则,在不同组之间似乎都是可区分的,这表明FP-Growth作为一种补充分析工具可应用于神经心理学评估,通过提供额外的数据分析水平、预测项目反应能力并辅助临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验