Suppr超能文献

胚胎心脏室成熟的分子和细胞基础。

Molecular and cellular basis of embryonic cardiac chamber maturation.

机构信息

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Semin Cell Dev Biol. 2021 Oct;118:144-149. doi: 10.1016/j.semcdb.2021.04.022. Epub 2021 May 11.

Abstract

Heart malformation is the leading cause of human birth defects, and many of the congenital heart diseases (CHDs) originate from genetic defects that impact cardiac development and maturation. During development, the vertebrate heart undergoes a series of complex morphogenetic processes that increase its ability to pump blood. One of these processes leads to the formation of the sheet-like muscular projections called trabeculae. Trabeculae increase cardiac output and permit nutrition and oxygen uptake in the embryonic myocardium prior to coronary vascularization without increasing heart size. Cardiac trabeculation is also crucial for the development of the intraventricular fast conduction system. Alterations in cardiac trabecular development can manifest as a variety of congenital defects such as left ventricular noncompaction. In this review, we discuss the latest advances in understanding the molecular and cellular mechanisms underlying cardiac trabecular development.

摘要

心脏畸形是人类出生缺陷的主要原因,许多先天性心脏病(CHD)源于影响心脏发育和成熟的遗传缺陷。在发育过程中,脊椎动物心脏经历了一系列复杂的形态发生过程,从而提高了其泵血能力。其中一个过程导致了板状肌肉突起的形成,这些突起被称为小梁。小梁增加了心输出量,并允许胚胎心肌在冠状动脉血管化之前摄取营养和氧气,而不会增加心脏大小。心脏小梁化对于心室内快速传导系统的发育也至关重要。心脏小梁发育的改变可能表现为各种先天性缺陷,如左心室肥厚。在这篇综述中,我们讨论了理解心脏小梁发育背后的分子和细胞机制的最新进展。

相似文献

1
Molecular and cellular basis of embryonic cardiac chamber maturation.
Semin Cell Dev Biol. 2021 Oct;118:144-149. doi: 10.1016/j.semcdb.2021.04.022. Epub 2021 May 11.
2
Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation.
Am J Med Genet C Semin Med Genet. 2013 Aug;163C(3):157-68. doi: 10.1002/ajmg.c.31366. Epub 2013 May 29.
3
Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation.
Nature. 2018 May;557(7705):439-445. doi: 10.1038/s41586-018-0110-6. Epub 2018 May 9.
4
Defects in Trabecular Development Contribute to Left Ventricular Noncompaction.
Pediatr Cardiol. 2019 Oct;40(7):1331-1338. doi: 10.1007/s00246-019-02161-9. Epub 2019 Jul 24.
5
BMP10 is essential for maintaining cardiac growth during murine cardiogenesis.
Development. 2004 May;131(9):2219-31. doi: 10.1242/dev.01094. Epub 2004 Apr 8.
6
Potential Common Pathogenic Pathways for the Left Ventricular Noncompaction Cardiomyopathy (LVNC).
Pediatr Cardiol. 2018 Aug;39(6):1099-1106. doi: 10.1007/s00246-018-1882-z. Epub 2018 May 15.
7
Role of tissue biomechanics in the formation and function of myocardial trabeculae in zebrafish embryos.
J Physiol. 2024 Feb;602(4):597-617. doi: 10.1113/JP285490. Epub 2024 Feb 12.
8
High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation.
Development. 2014 Feb;141(3):585-93. doi: 10.1242/dev.098632. Epub 2014 Jan 8.
9
A dual role for ErbB2 signaling in cardiac trabeculation.
Development. 2010 Nov;137(22):3867-75. doi: 10.1242/dev.053736.
10
Nrg1 Regulates Cardiomyocyte Migration and Cell Cycle in Ventricular Development.
Circ Res. 2023 Nov 10;133(11):927-943. doi: 10.1161/CIRCRESAHA.123.323321. Epub 2023 Oct 17.

引用本文的文献

1
Molecular Regulation of Cardiomyocyte Maturation.
Curr Cardiol Rep. 2025 Jan 21;27(1):32. doi: 10.1007/s11886-024-02189-1.
3
Endothelial deletion of PTBP1 disrupts ventricular chamber development.
Nat Commun. 2023 Mar 31;14(1):1796. doi: 10.1038/s41467-023-37409-9.
4
New developments in the biology of fibroblast growth factors.
WIREs Mech Dis. 2022 Jul;14(4):e1549. doi: 10.1002/wsbm.1549. Epub 2022 Feb 9.
5
Heart generation and regeneration.
Semin Cell Dev Biol. 2021 Oct;118:92-93. doi: 10.1016/j.semcdb.2021.07.014. Epub 2021 Jul 22.

本文引用的文献

1
Cardiomyocyte orientation modulated by the Numb family proteins-N-cadherin axis is essential for ventricular wall morphogenesis.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15560-15569. doi: 10.1073/pnas.1904684116. Epub 2019 Jul 12.
2
Lin28a Regulates Pathological Cardiac Hypertrophic Growth Through Pck2-Mediated Enhancement of Anabolic Synthesis.
Circulation. 2019 Apr 2;139(14):1725-1740. doi: 10.1161/CIRCULATIONAHA.118.037803.
3
The deployment of cell lineages that form the mammalian heart.
Nat Rev Cardiol. 2018 Nov;15(11):705-724. doi: 10.1038/s41569-018-0086-9.
5
Rapamycin attenuates pathological hypertrophy caused by an absence of trabecular formation.
Sci Rep. 2018 Jun 5;8(1):8584. doi: 10.1038/s41598-018-26843-1.
6
Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation.
Nature. 2018 May;557(7705):439-445. doi: 10.1038/s41586-018-0110-6. Epub 2018 May 9.
7
Fates Aligned: Origins and Mechanisms of Ventricular Conduction System and Ventricular Wall Development.
Pediatr Cardiol. 2018 Aug;39(6):1090-1098. doi: 10.1007/s00246-018-1869-9. Epub 2018 Mar 28.
8
Mechanisms of Trabecular Formation and Specification During Cardiogenesis.
Pediatr Cardiol. 2018 Aug;39(6):1082-1089. doi: 10.1007/s00246-018-1868-x. Epub 2018 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验