White Jordan M, Escorcia Freddy E, Viola Nerissa T
Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201.
Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201.
Theranostics. 2021 Apr 15;11(13):6293-6314. doi: 10.7150/thno.57177. eCollection 2021.
Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab'), Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.
放射免疫疗法(RIT)已获美国食品药品监督管理局(FDA)批准用于液体恶性肿瘤的临床治疗,然而,其在实体恶性肿瘤治疗中的应用仍然是一项挑战。RIT的潜在益处在于利用单克隆抗体选择性靶向肿瘤表面表达的抗原,从而全身递送细胞毒性放射性核素。在过去几十年中,发射α、β和俄歇电子的治疗性放射性金属在质量、数量以及近期的商业可得性方面都有了显著提高。研究人员已经开发出了新的或改进了现有的双功能螯合剂。这些双功能螯合剂能够结合放射性金属,并可与抗原特异性抗体偶联。在本综述中,我们讨论了开发基于放射性金属的RIT的方法,包括放射性金属、螯合剂和抗体平台(即全长抗体、F(ab')、Fab、微型抗体、双抗体、单链抗体-Fc和纳米抗体)的选择。我们列举了RIT在临床中的表现实例,描述了其实施过程中面临的挑战,并针对转化过程中的差距提供了解决思路。