文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在高血糖条件下,以[具体内容缺失]为模型对用于口服胰岛素递送的黏液渗透纳米颗粒进行测试。

testing of mucus-permeating nanoparticles for oral insulin delivery using as a model under hyperglycemic conditions.

作者信息

Martínez-López Ana L, González-Navarro Carlos J, Aranaz Paula, Vizmanos José L, Irache Juan M

机构信息

NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona 31080, Spain.

Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona 31080, Spain.

出版信息

Acta Pharm Sin B. 2021 Apr;11(4):989-1002. doi: 10.1016/j.apsb.2021.02.020. Epub 2021 Mar 1.


DOI:10.1016/j.apsb.2021.02.020
PMID:33996411
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8105877/
Abstract

The aim was to evaluate the potential of mucus-permeating nanoparticles for the oral administration of insulin. These nanocarriers, based on the coating of zein nanoparticles with a polymer conjugate containing PEG, displayed a size of 260 nm with a negative surface charge and an insulin payload of 77 μg/mg. In intestinal pig mucus, the diffusivity of these nanoparticles (PPA-NPs) was found to be 20-fold higher than bare nanoparticles (NPs). These results were in line with the biodistribution study in rats, in which NPs remained trapped in the mucus, whereas PPA-NPs were able to cross this layer and reach the epithelium surface. The therapeutic efficacy was evaluated in grown under high glucose conditions. In this model, worms treated with insulin-loaded in PPA-NPs displayed a longer lifespan than those treated with insulin free or nanoencapsulated in NPs. This finding was associated with a significant reduction in the formation of reactive oxygen species (ROS) as well as an important decrease in the glucose and fat content in worms. These effects would be related with the mucus-permeating ability of PPA-NPs that would facilitate the passage through the intestinal peritrophic-like dense layer of worms (similar to mucus) and, thus, the absorption of insulin.

摘要

目的是评估可渗透黏液的纳米颗粒用于口服胰岛素的潜力。这些纳米载体基于用含聚乙二醇(PEG)的聚合物共轭物包覆玉米醇溶蛋白纳米颗粒,粒径为260纳米,表面带负电荷,胰岛素载药量为77微克/毫克。在猪肠道黏液中,发现这些纳米颗粒(PPA-NPs)的扩散率比裸纳米颗粒(NPs)高20倍。这些结果与大鼠体内生物分布研究一致,在该研究中,NPs被困在黏液中,而PPA-NPs能够穿过这一层并到达上皮表面。在高糖条件下生长的[具体生物名称未给出]中评估了治疗效果。在该模型中用PPA-NPs包载胰岛素处理的[具体生物名称未给出]比用游离胰岛素或NPs包封的胰岛素处理的[具体生物名称未给出]寿命更长。这一发现与活性氧(ROS)形成的显著减少以及[具体生物名称未给出]体内葡萄糖和脂肪含量的显著降低有关。这些作用可能与PPA-NPs的黏液渗透能力有关,该能力有助于其穿过[具体生物名称未给出]类似围食膜的致密层(类似于黏液),从而促进胰岛素的吸收。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/aba348ec29f7/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/c392225d7f5c/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/1554982d38e5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/91c187b0f511/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/f34ea5828410/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/e78d507c61bb/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/5b9e6904574c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/be964950718c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/7c63db0b7694/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/2817606c5ecb/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/dd386a5c3f87/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/aba348ec29f7/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/c392225d7f5c/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/1554982d38e5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/91c187b0f511/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/f34ea5828410/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/e78d507c61bb/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/5b9e6904574c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/be964950718c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/7c63db0b7694/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/2817606c5ecb/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/dd386a5c3f87/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e853/8105877/aba348ec29f7/gr10.jpg

相似文献

[1]
testing of mucus-permeating nanoparticles for oral insulin delivery using as a model under hyperglycemic conditions.

Acta Pharm Sin B. 2021-4

[2]
Zein-based nanocarriers for the oral delivery of insulin. In vivo evaluation in Caenorhabditis elegans.

Drug Deliv Transl Res. 2021-4

[3]
Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery.

Pharmaceutics. 2021-12-24

[4]
Preparation and evaluation of PEG-coated zein nanoparticles for oral drug delivery purposes.

Int J Pharm. 2021-3-15

[5]
Modulation of the fate of zein nanoparticles by their coating with a Gantrez® AN-thiamine polymer conjugate.

Int J Pharm X. 2019-1-25

[6]
Zein-based nanoparticles for the oral delivery of insulin.

Drug Deliv Transl Res. 2020-12

[7]
Insulin loaded mucus permeating nanoparticles: Addressing the surface characteristics as feature to improve mucus permeation.

Int J Pharm. 2016-3-16

[8]
In vivo study of the mucus-permeating properties of PEG-coated nanoparticles following oral administration.

Eur J Pharm Biopharm. 2015-11

[9]
On the synthesis of mucus permeating nanocarriers.

Eur J Pharm Biopharm. 2015-11

[10]
Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery.

ACS Appl Mater Interfaces. 2018-3-15

引用本文的文献

[1]
Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties.

J Nanobiotechnology. 2024-11-1

[2]
Enteral Route Nanomedicine for Cancer Therapy.

Int J Nanomedicine. 2024

[3]
Oral peptide therapeutics for diabetes treatment: State-of-the-art and future perspectives.

Acta Pharm Sin B. 2024-5

[4]
Oral nanotherapeutic formulation of insulin with reduced episodes of hypoglycaemia.

Nat Nanotechnol. 2024-4

[5]
Mucus-penetrating and permeation enhancer albumin-based nanoparticles for oral delivery of macromolecules: Application to bevacizumab.

Drug Deliv Transl Res. 2024-5

[6]
The feasibility of oral targeted drug delivery: Gut immune to particulates?

Acta Pharm Sin B. 2023-6

[7]
Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies.

Curr Drug Deliv. 2024

[8]
Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment.

Asian J Pharm Sci. 2022-11

[9]
Synthesis and Properties of α-Mangostin and Vadimezan Conjugates with Glucoheptoamidated and Biotinylated 3rd Generation Poly(amidoamine) Dendrimer, and Conjugation Effect on Their Anticancer and Anti-Nematode Activities.

Pharmaceutics. 2022-3-10

[10]
Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery.

Pharmaceutics. 2021-12-24

本文引用的文献

[1]
Zein-based nanoparticles for the oral delivery of insulin.

Drug Deliv Transl Res. 2020-12

[2]
Protein-based nanoparticles for drug delivery purposes.

Int J Pharm. 2020-5-15

[3]
Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems.

Molecules. 2020-3-5

[4]
A Brief Overview of the Oral Delivery of Insulin as an Alternative to the Parenteral Delivery.

Curr Mol Med. 2020

[5]
Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins.

Acta Pharm Sin B. 2019-9

[6]
Modulation of the fate of zein nanoparticles by their coating with a Gantrez® AN-thiamine polymer conjugate.

Int J Pharm X. 2019-1-25

[7]
Nanoparticles: Oral Delivery for Protein and Peptide Drugs.

AAPS PharmSciTech. 2019-5-20

[8]
The C. elegans intestine: organogenesis, digestion, and physiology.

Cell Tissue Res. 2019-5-7

[9]
The effect of thiamine-coating nanoparticles on their biodistribution and fate following oral administration.

Eur J Pharm Sci. 2018-11-23

[10]
Cyclodextrin-grafted poly(anhydride) nanoparticles for oral glibenclamide administration. In vivo evaluation using C. elegans.

Int J Pharm. 2018-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索