文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胃肠道脂肪分解及自微乳药物传递系统的跨上皮转运——口服途径

Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS oral route.

作者信息

Xia Fei, Chen Zhongjian, Zhu Quangang, Qi Jianping, Dong Xiaochun, Zhao Weili, Wu Wei, Lu Yi

机构信息

Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.

Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.

出版信息

Acta Pharm Sin B. 2021 Apr;11(4):1010-1020. doi: 10.1016/j.apsb.2021.03.006. Epub 2021 Mar 10.


DOI:10.1016/j.apsb.2021.03.006
PMID:33996413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8105768/
Abstract

Self-microemulsifying drug delivery systems (SMEDDSs) have recently returned to the limelight of academia and industry due to their enormous potential in oral delivery of biomacromolecules. However, information on gastrointestinal lipolysis and trans-epithelial transport of SMEDDS is rare. Aggregation-caused quenching (ACQ) fluorescent probes are utilized to visualize the behaviors of SMEDDSs, because the released probes during lipolysis are quenched upon contacting water. Two SMEDDSs composed of medium chain triglyceride and different ratios of Tween-80 and PEG-400 are set as models, meanwhile Neoral® was used as a control. The SMEDDS droplets reside in the digestive tract for as long as 24 h and obey first order kinetic law of lipolysis. The increased chain length of the triglyceride decreases the lipolysis of the SMEDDSs. imaging of main tissues and histological examination confirm the trans-epithelial transportation of the SMEDDS droplets. Approximately 2%-4% of the given SMEDDSs are transported the lymph route following epithelial uptake, while liver is the main termination. Caco-2 cell lines confirm the cellular uptake and trans-epithelial transport. In conclusion, a fraction of SMEDDSs can survive the lipolysis in the gastrointestinal tract, permeate across the epithelia, translocate the lymph, and accumulate mainly in the liver.

摘要

自微乳化药物递送系统(SMEDDSs)因其在口服递送生物大分子方面的巨大潜力,最近重新成为学术界和工业界关注的焦点。然而,关于SMEDDS在胃肠道中的脂解作用和跨上皮转运的信息却很少。由于脂解过程中释放的探针在接触水时会发生淬灭,因此利用聚集诱导淬灭(ACQ)荧光探针来观察SMEDDS的行为。将由中链甘油三酯以及不同比例的吐温80和聚乙二醇400组成的两种SMEDDS作为模型,同时使用新山地明作为对照。SMEDDS液滴在消化道中停留长达24小时,并遵循脂解的一级动力学规律。甘油三酯链长的增加会降低SMEDDS的脂解作用。主要组织的成像和组织学检查证实了SMEDDS液滴的跨上皮转运。给予的SMEDDS中约2%-4%在上皮细胞摄取后通过淋巴途径转运,而肝脏是主要的终末器官。Caco-2细胞系证实了细胞摄取和跨上皮转运。总之,一部分SMEDDS能够在胃肠道的脂解过程中存活下来,穿过上皮细胞,通过淋巴转运,并主要在肝脏中蓄积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/5ce4db464cb6/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/f827aea819b2/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/3f32d963dd68/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/ecaff65c1afd/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/13d618cdce52/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/0ffc7e828a97/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/564b2a9f0947/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/e2fce36a41cd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/55b1abd89a1a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/2fc9a70c7a5a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/5ce4db464cb6/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/f827aea819b2/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/3f32d963dd68/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/ecaff65c1afd/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/13d618cdce52/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/0ffc7e828a97/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/564b2a9f0947/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/e2fce36a41cd/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/55b1abd89a1a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/2fc9a70c7a5a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bfe/8105768/5ce4db464cb6/gr9.jpg

相似文献

[1]
Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS oral route.

Acta Pharm Sin B. 2021-4

[2]
Characterisation of fenofibrate dissolution delivered by a self-microemulsifying drug-delivery system.

J Pharm Pharmacol. 2010-10-5

[3]
Semisolid self-microemulsifying drug delivery systems (SMEDDSs): Effects on pharmacokinetics of acyclovir in rats.

Eur J Pharm Sci. 2018-6-6

[4]
Slowing down lipolysis significantly enhances the oral absorption of intact solid lipid nanoparticles.

Biomater Sci. 2019-8-13

[5]
Formulation and In Vitro Evaluation of Self Microemulsifying Drug Delivery System Containing Atorvastatin Calcium.

Curr Drug Deliv. 2019

[6]
Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs) filled in hard capsules for oral delivery of aciclovir.

Int J Pharm. 2017-8-7

[7]
Oral absorption and lymphatic transport of baicalein following drug-phospholipid complex incorporation in self-microemulsifying drug delivery systems.

Int J Nanomedicine. 2019-9-6

[8]
Improved Safety and Anti-Glioblastoma Efficacy of CAT3-Encapsulated SMEDDS through Metabolism Modification.

Molecules. 2021-1-18

[9]
[Self-microemulsifying drug delivery system of patchoulic alcohol to improve oral bioavailability in rats].

Zhongguo Zhong Yao Za Zhi. 2010-3

[10]
Size-Dependent Translocation of Nanoemulsions via Oral Delivery.

ACS Appl Mater Interfaces. 2017-6-23

引用本文的文献

[1]
Enteral Route Nanomedicine for Cancer Therapy.

Int J Nanomedicine. 2024

[2]
Design and Evaluation of Clove Oil-Based Self-Emulsifying Drug Delivery Systems for Improving the Oral Bioavailability of Neratinib Maleate.

Pharmaceutics. 2024-8-19

[3]
2-Monoacylglycerol Mimetic Liposomes to Promote Intestinal Lymphatic Transport for Improving Oral Bioavailability of Dihydroartemisinin.

Int J Nanomedicine. 2024

[4]
Soft-capsule formulation of a re-esterified triglyceride omega-3 employing self-emulsifying technology and bioavailability evaluation in healthy volunteers.

Heliyon. 2023-9-21

[5]
The feasibility of oral targeted drug delivery: Gut immune to particulates?

Acta Pharm Sin B. 2023-6

[6]
Transcellular Transport Behavior of the Intact Polymeric Mixed Micelles with Different Polymeric Ratios.

AAPS PharmSciTech. 2023-2-15

[7]
Ionic co-aggregates (ICAs) based oral drug delivery: Solubilization and permeability improvement.

Acta Pharm Sin B. 2022-10

[8]
Enhanced oral absorption of insulin: hydrophobic ion pairing and a self-microemulsifying drug delivery system using a D-optimal mixture design.

Drug Deliv. 2022-12

[9]
Mechanism of Enhanced Oral Absorption of a Nano-Drug Delivery System Loaded with Trimethyl Chitosan Derivatives.

Int J Nanomedicine. 2022

[10]
Self-Emulsifying Drug Delivery Systems: An Alternative Approach to Improve Brain Bioavailability of Poorly Water-Soluble Drugs through Intranasal Administration.

Pharmaceutics. 2022-7-18

本文引用的文献

[1]
dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging.

Acta Pharm Sin B. 2021-4

[2]
The biological fate of orally administered mPEG-PDLLA polymeric micelles.

J Control Release. 2020-11-10

[3]
Glucan microparticles thickened with thermosensitive gels as potential carriers for oral delivery of insulin.

J Mater Chem B. 2016-6-14

[4]
Effect of Surface Charges on Oral Absorption of Intact Solid Lipid Nanoparticles.

Mol Pharm. 2019-11-1

[5]
Self-emulsifying drug delivery systems (SEDDS) - The splendid comeback of an old technology.

Adv Drug Deliv Rev. 2019-3-1

[6]
Slowing down lipolysis significantly enhances the oral absorption of intact solid lipid nanoparticles.

Biomater Sci. 2019-8-13

[7]
Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool.

Adv Drug Deliv Rev. 2019-5-31

[8]
Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies.

Adv Drug Deliv Rev. 2019-4-8

[9]
The Trigeminal Pathway Dominates the Nose-to-Brain Transportation of Intact Polymeric Nanoparticles: Evidence from Aggregation-Caused Quenching Probes.

J Biomed Nanotechnol. 2019-4-1

[10]
SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats.

Int J Pharm. 2019-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索