Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Erlangen, Germany.
Functional Analysis and Operational Equations, Voronezh State University, Voronezh, Russia.
Int J Cancer. 2021 Sep 1;149(5):1150-1165. doi: 10.1002/ijc.33681. Epub 2021 May 26.
Quantification of DNA methylation in neoplastic cells is crucial both from mechanistic and diagnostic perspectives. However, such measurements are prone to different experimental biases. Polymerase chain reaction (PCR) bias results in an unequal recovery of methylated and unmethylated alleles at the sample preparation step. Post-PCR biases get introduced additionally by the readout processes. Correcting the biases is more practicable than optimising experimental conditions, as demonstrated previously. However, utilisation of our earlier developed algorithm strongly necessitates automation. Here, we present two R packages: rBiasCorrection, the core algorithms to correct biases; and BiasCorrector, its web-based graphical user interface frontend. The software detects and analyses experimental biases in calibration DNA samples at a single base resolution by using cubic polynomial and hyperbolic regression. The correction coefficients from the best regression type are employed to compensate for the bias. Three common technologies-bisulphite pyrosequencing, next-generation sequencing and oligonucleotide microarrays-were used to comprehensively test BiasCorrector. We demonstrate the accuracy of BiasCorrector's performance and reveal technology-specific PCR- and post-PCR biases. BiasCorrector effectively eliminates biases regardless of their nature, locus, the number of interrogated methylation sites and the detection method, thus representing a user-friendly tool for producing accurate epigenetic results.
定量检测肿瘤细胞中的 DNA 甲基化,从机制和诊断的角度来看都至关重要。然而,这些测量容易受到不同的实验偏倚的影响。聚合酶链反应(PCR)偏倚会导致在样品制备步骤中,甲基化和未甲基化等位基因的回收不平衡。此外,在读取过程中还会引入 PCR 后偏倚。如前所述,纠正偏倚比优化实验条件更可行。然而,我们之前开发的算法的应用强烈需要自动化。在这里,我们提出了两个 R 包:rBiasCorrection,用于校正偏倚的核心算法;以及 BiasCorrector,它的基于网络的图形用户界面前端。该软件通过使用三次多项式和双曲回归,以单个碱基分辨率检测和分析校准 DNA 样本中的实验偏倚。从最佳回归类型中获取校正系数以补偿偏倚。我们使用三种常见技术——亚硫酸氢盐焦磷酸测序、下一代测序和寡核苷酸微阵列——全面测试了 BiasCorrector。我们证明了 BiasCorrector 性能的准确性,并揭示了特定于技术的 PCR 和 PCR 后偏倚。BiasCorrector 可以有效地消除偏倚,无论其性质、位置、检测的甲基化位点数量和检测方法如何,因此它是一种用户友好的工具,可用于生成准确的表观遗传结果。