Suppr超能文献

在贝叶斯框架下纳入倾向得分进行证据综合:临床研究综述与建议

Incorporating propensity scores for evidence synthesis under bayesian framework: review and recommendations for clinical studies.

作者信息

Lin Junjing, Lin Jianchang

机构信息

Statistical and Quantitative Sciences, Takeda Pharmaceutical Co Ltd, Cambridge, United States.

出版信息

J Biopharm Stat. 2022 Jan 2;32(1):53-74. doi: 10.1080/10543406.2021.1882481. Epub 2021 May 16.

Abstract

The amount of real-world data (RWD) available from sources other than randomized-controlled trials (RCTs) has grown ultra-rapidly in recent years. It provides the impetus for generating substantial evidence of effectiveness and safety from both RCTs and RWD to accelerate medical product development. Especially in the areas of unmet needs, the conduct of fully powered RCTs is generally infeasible because of their sizes, duration, cost, or ethical constraints. The unique challenges in such areas include a small patient population, heterogeneity in disease presentation, and a lack of established endpoints. However, merging information from disparate sources is an intricate task. The value of the Bayesian framework has gained more recognition due to its flexibility in calibrating uncertainty and handling data heterogeneity, and its inherent updating process ideal for synthesizing information. Meanwhile, propensity score, as a powerful tool in causal inference, can be used in various ways to adjust for confounders. As a newly emerging data borrowing strategy in a regulatory setting, integrating propensity scores in a Bayesian setting not only utilizes the strengths from Bayesian models but also minimizes bias from external data borrowing. These methods potentially allow information sharing among data sources, provide more reliable estimates when the sample size is small, and improve the efficiency of treatment effect estimation. In this paper, we will review the recent development of methods incorporating propensity score for evidence synthesis under the Bayesian framework, and discuss different examples of incorporating external data with or without RCTs, as well as the recommendations for reporting in clinical studies.

摘要

近年来,除随机对照试验(RCT)之外的其他来源的真实世界数据(RWD)数量增长极为迅速。这为从RCT和RWD中生成大量有效性和安全性证据以加速医疗产品开发提供了动力。特别是在未满足需求的领域,由于规模、持续时间、成本或伦理限制,开展充分有力的RCT通常不可行。这些领域的独特挑战包括患者群体规模小、疾病表现异质性以及缺乏既定的终点。然而,整合来自不同来源的信息是一项复杂的任务。贝叶斯框架的价值因其在校准不确定性和处理数据异质性方面的灵活性以及其适用于信息合成的固有更新过程而得到了更多认可。同时,倾向得分作为因果推断中的一种强大工具,可以通过多种方式用于调整混杂因素。作为监管环境中一种新兴的数据借用策略,在贝叶斯框架中整合倾向得分不仅利用了贝叶斯模型的优势,还最大限度地减少了外部数据借用带来的偏差。这些方法有可能实现数据源之间的信息共享,在样本量较小时提供更可靠的估计,并提高治疗效果估计的效率。在本文中,我们将回顾在贝叶斯框架下纳入倾向得分进行证据合成的方法的最新进展,并讨论纳入有或没有RCT的外部数据的不同示例,以及临床研究报告的建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验