Suppr超能文献

组合使用协变量处理方法和动态借用进行混合控制研究。

Covariate handling approaches in combination with dynamic borrowing for hybrid control studies.

机构信息

Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA.

PD Data Sciences, Genentech, South San Francisco, California, USA.

出版信息

Pharm Stat. 2023 Jul-Aug;22(4):619-632. doi: 10.1002/pst.2297. Epub 2023 Mar 7.

Abstract

Borrowing data from external control has been an appealing strategy for evidence synthesis when conducting randomized controlled trials (RCTs). Often named hybrid control trials, they leverage existing control data from clinical trials or potentially real-world data (RWD), enable trial designs to allocate more patients to the novel intervention arm, and improve the efficiency or lower the cost of the primary RCT. Several methods have been established and developed to borrow external control data, among which the propensity score methods and Bayesian dynamic borrowing framework play essential roles. Noticing the unique strengths of propensity score methods and Bayesian hierarchical models, we utilize both methods in a complementary manner to analyze hybrid control studies. In this article, we review methods including covariate adjustments, propensity score matching and weighting in combination with dynamic borrowing and compare the performance of these methods through comprehensive simulations. Different degrees of covariate imbalance and confounding are examined. Our findings suggested that the conventional covariate adjustment in combination with the Bayesian commensurate prior model provides the highest power with good type I error control under the investigated settings. It has desired performance especially under scenarios of different degrees of confounding. To estimate efficacy signals in the exploratory setting, the covariate adjustment method in combination with the Bayesian commensurate prior is recommended.

摘要

从外部对照数据中借用数据一直是进行随机对照试验(RCT)证据综合的一种诱人策略。通常被命名为混合对照试验,它们利用临床试验或潜在的真实世界数据(RWD)中的现有对照数据,使试验设计能够为新干预组分配更多患者,并提高主要 RCT 的效率或降低成本。已经建立和开发了几种方法来借用外部对照数据,其中倾向评分方法和贝叶斯动态借用框架起着重要作用。注意到倾向评分方法和贝叶斯层次模型的独特优势,我们以互补的方式利用这两种方法来分析混合对照研究。在本文中,我们回顾了包括协变量调整、倾向评分匹配和加权与动态借用相结合的方法,并通过全面的模拟比较了这些方法的性能。检查了不同程度的协变量不平衡和混杂。我们的研究结果表明,在调查的设置下,常规协变量调整与贝叶斯相称先验模型相结合提供了最高的功效,同时具有良好的 I 型错误控制。它在不同程度混杂的情况下具有理想的性能。为了在探索性设置中估计疗效信号,建议使用协变量调整方法与贝叶斯相称先验相结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验