Suppr超能文献

基于生成对抗网络预测长链非编码RNA与疾病的关联

Predicting LncRNA-Disease Association Based on Generative Adversarial Network.

作者信息

Du Biao, Tang Lin, Liu Lin, Zhou Wei

机构信息

School of Information, Yunnan Normal University, Kunming, China.

Key Laboratory of Educational Informatization for Nationalities Ministry of Education, Yunnan Normal University, Kunming, China.

出版信息

Curr Gene Ther. 2022;22(2):144-151. doi: 10.2174/1566523221666210506131055.

Abstract

BACKGROUND

Increasing research reveals that long non-coding RNAs (lncRNAs) play an important role in various biological processes of human diseases. Nonetheless, only a handful of lncRNA-disease associations have been experimentally verified. The study of lncRNA-disease association prediction based on the computational model has provided a preliminary basis for biological experiments to a great degree so as to cut down the huge cost of wet lab experiments.

OBJECTIVE

This study aims to learn the real distribution of lncRNA-disease association from a limited number of known lncRNA-disease association data. This paper proposes a new lncRNA-disease association prediction model called LDA-GAN based on a Generative Adversarial Network (GAN).

METHODS

Aiming at the problems of slow convergence rate, training instabilities, and unavailability of discrete data in traditional GAN, LDA-GAN utilizes the Gumbel-softmax technology to construct a differentiable process for simulating discrete sampling. Meanwhile, the generator and the discriminator of LDA-GAN are integrated to establish the overall optimization goal based on the pairwise loss function.

RESULTS

Experiments on standard datasets demonstrate that LDA-GAN achieves not only high stability and high efficiency in the process of confrontation learning but also gives full play to the semisupervised learning advantage of generative adversarial learning framework for unlabeled data, which further improves the prediction accuracy of lncRNA-disease association. Besides, case studies show that LDA-GAN can accurately generate potential diseases for several lncRNAs.

CONCLUSION

We introduce a generative adversarial model to identify lncRNA-disease associations.

摘要

背景

越来越多的研究表明,长链非编码RNA(lncRNA)在人类疾病的各种生物学过程中发挥着重要作用。尽管如此,只有少数lncRNA与疾病的关联得到了实验验证。基于计算模型的lncRNA与疾病关联预测研究在很大程度上为生物学实验提供了初步依据,从而降低了湿实验室实验的巨大成本。

目的

本研究旨在从有限数量的已知lncRNA与疾病关联数据中了解lncRNA与疾病关联的真实分布情况。本文提出了一种基于生成对抗网络(GAN)的新的lncRNA与疾病关联预测模型,称为LDA-GAN。

方法

针对传统GAN收敛速度慢、训练不稳定以及离散数据不可用等问题,LDA-GAN利用Gumbel-softmax技术构建了一个可微过程来模拟离散采样。同时,将LDA-GAN的生成器和判别器进行整合,基于成对损失函数建立整体优化目标。

结果

在标准数据集上的实验表明,LDA-GAN不仅在对抗学习过程中实现了高稳定性和高效率,还充分发挥了生成对抗学习框架对未标记数据的半监督学习优势,进一步提高了lncRNA与疾病关联的预测准确率。此外,案例研究表明,LDA-GAN可以准确地为几种lncRNA生成潜在疾病。

结论

我们引入了一种生成对抗模型来识别lncRNA与疾病的关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验