Suppr超能文献

基于深度学习的甲状腺结节超声图像分类

Ultrasound Image Classification of Thyroid Nodules Based on Deep Learning.

作者信息

Yang Jingya, Shi Xiaoli, Wang Bing, Qiu Wenjing, Tian Geng, Wang Xudong, Wang Peizhen, Yang Jiasheng

机构信息

School of Electrical & Information Engineering, Anhui University of Technology, Ma'anshan, China.

Scientific System, Geneis Beijing Co., Ltd., Beijing, China.

出版信息

Front Oncol. 2022 Jul 15;12:905955. doi: 10.3389/fonc.2022.905955. eCollection 2022.

Abstract

A thyroid nodule, which is defined as abnormal growth of thyroid cells, indicates excessive iodine intake, thyroid degeneration, inflammation, and other diseases. Although thyroid nodules are always non-malignant, the malignancy likelihood of a thyroid nodule grows steadily every year. In order to reduce the burden on doctors and avoid unnecessary fine needle aspiration (FNA) and surgical resection, various studies have been done to diagnose thyroid nodules through deep-learning-based image recognition analysis. In this study, to predict the benign and malignant thyroid nodules accurately, a novel deep learning framework is proposed. Five hundred eight ultrasound images were collected from the Third Hospital of Hebei Medical University in China for model training and validation. First, a ResNet18 model, pretrained on ImageNet, was trained by an ultrasound image dataset, and a random sampling of training dataset was applied 10 times to avoid accidental errors. The results show that our model has a good performance, the average area under curve (AUC) of 10 times is 0.997, the average accuracy is 0.984, the average recall is 0.978, the average precision is 0.939, and the average F1 score is 0.957. Second, Gradient-weighted Class Activation Mapping (Grad-CAM) was proposed to highlight sensitive regions in an ultrasound image during the learning process. Grad-CAM is able to extract the sensitive regions and analyze their shape features. Based on the results, there are obvious differences between benign and malignant thyroid nodules; therefore, shape features of the sensitive regions are helpful in diagnosis to a great extent. Overall, the proposed model demonstrated the feasibility of employing deep learning and ultrasound images to estimate benign and malignant thyroid nodules.

摘要

甲状腺结节被定义为甲状腺细胞的异常生长,提示碘摄入过量、甲状腺退变、炎症及其他疾病。尽管甲状腺结节通常为良性,但甲状腺结节的恶性可能性逐年稳步增加。为减轻医生负担并避免不必要的细针穿刺抽吸(FNA)和手术切除,已开展了多项基于深度学习的图像识别分析来诊断甲状腺结节的研究。在本研究中,为准确预测甲状腺结节的良恶性,提出了一种新型深度学习框架。从中国河北医科大学第三医院收集了508幅超声图像用于模型训练和验证。首先,使用超声图像数据集对在ImageNet上预训练的ResNet18模型进行训练,并对训练数据集进行10次随机采样以避免偶然误差。结果表明,我们的模型具有良好的性能,10次的平均曲线下面积(AUC)为0.997,平均准确率为0.984,平均召回率为0.978,平均精确率为0.939,平均F1分数为0.957。其次,提出了梯度加权类激活映射(Grad-CAM)以在学习过程中突出超声图像中的敏感区域。Grad-CAM能够提取敏感区域并分析其形状特征。基于结果,良性和恶性甲状腺结节之间存在明显差异;因此,敏感区域的形状特征在很大程度上有助于诊断。总体而言,所提出的模型证明了采用深度学习和超声图像来评估甲状腺结节良恶性的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/9335944/42e40de8ed48/fonc-12-905955-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验