Dept. Global Ecology, Carnegie Institution, Stanford, CA, 94305, USA.
Photosynth Res. 2021 Jun;148(3):101-136. doi: 10.1007/s11120-021-00840-4. Epub 2021 May 17.
Here, we present a conceptual and quantitative model to describe the role of the Cytochrome [Formula: see text] complex in controlling steady-state electron transport in [Formula: see text] leaves. The model is based on new experimental methods to diagnose the maximum activity of Cyt [Formula: see text] in vivo, and to identify conditions under which photosynthetic control of Cyt [Formula: see text] is active or relaxed. With these approaches, we demonstrate that Cyt [Formula: see text] controls the trade-off between the speed and efficiency of electron transport under limiting light, and functions as a metabolic switch that transfers control to carbon metabolism under saturating light. We also present evidence that the onset of photosynthetic control of Cyt [Formula: see text] occurs within milliseconds of exposure to saturating light, much more quickly than the induction of non-photochemical quenching. We propose that photosynthetic control is the primary means of photoprotection and functions to manage excitation pressure, whereas non-photochemical quenching functions to manage excitation balance. We use these findings to extend the Farquhar et al. (Planta 149:78-90, 1980) model of [Formula: see text] photosynthesis to include a mechanistic description of the electron transport system. This framework relates the light captured by PS I and PS II to the energy and mass fluxes linking the photoacts with Cyt [Formula: see text], the ATP synthase, and Rubisco. It enables quantitative interpretation of pulse-amplitude modulated fluorometry and gas-exchange measurements, providing a new basis for analyzing how the electron transport system coordinates the supply of Fd, NADPH, and ATP with the dynamic demands of carbon metabolism, how efficient use of light is achieved under limiting light, and how photoprotection is achieved under saturating light. The model is designed to support forward as well as inverse applications. It can either be used in a stand-alone mode at the leaf-level or coupled to other models that resolve finer-scale or coarser-scale phenomena.
在这里,我们提出了一个概念和定量模型,以描述细胞色素[公式:见正文]复合物在控制[公式:见正文]叶片中稳态电子传递中的作用。该模型基于新的实验方法来诊断细胞色素[公式:见正文]的最大体内活性,并确定光合作用控制细胞色素[公式:见正文]活跃或放松的条件。通过这些方法,我们证明细胞色素[公式:见正文]控制在限制光下电子传递的速度和效率之间的权衡,并作为代谢开关,在饱和光下将控制转移到碳代谢。我们还提供了证据表明,光合作用控制细胞色素[公式:见正文]的起始发生在暴露于饱和光后的毫秒内,比非光化学猝灭的诱导快得多。我们提出,光合作用控制是光保护的主要手段,其功能是管理激发压力,而非光化学猝灭的功能是管理激发平衡。我们利用这些发现扩展了 Farquhar 等人(Planta 149:78-90, 1980)的[公式:见正文]光合作用模型,以包括电子传递系统的机制描述。该框架将 PS I 和 PS II 捕获的光与将光作用与细胞色素[公式:见正文]、ATP 合酶和 Rubisco 联系起来的能量和物质通量联系起来。它使我们能够对脉冲幅度调制荧光法和气体交换测量进行定量解释,为分析电子传递系统如何协调 Fd、NADPH 和 ATP 的供应与碳代谢的动态需求、如何在限制光下实现高效用光以及如何在饱和光下实现光保护提供了新的基础。该模型旨在支持正向和反向应用。它可以在叶级单独使用,也可以与其他分辨率更精细或更粗糙尺度现象的模型耦合使用。