Suppr超能文献

Adaptive Neural Network Output-Constraint Control for a Variable-Length Rotary Arm With Input Backlash Nonlinearity.

作者信息

Mei Yanfang, Liu Yu, Wang Huan

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4741-4749. doi: 10.1109/TNNLS.2021.3117251. Epub 2023 Aug 4.

Abstract

This article studies the problem of deformation reduction and attitude tracking for a rotated and extended flexible crane arm with input backlash-saturation and output asymmetrical constraint. By employing Halmilton's principle, the arm system model is formulated by a set of partial and ordinary differential equations (ODEs). Given the modeling inaccuracy, a radial neural network (RNN) is used to approximate system parameters. To better design the controllers, the backstepping technique is applied to the control design. For input nonlinearities with backlash and saturation, we reversely transform them as an asymmetric saturation constraint via a virtual input. A barrier Lyapunov function (BLF) containing logarithmic terms is constructed to guarantee the asymmetric output constraints and the uniformly ultimate boundedness and stability of the arm system are proved. Finally, to testify the effectiveness of the proposed controllers, numerical simulations are carried out, and responding simulation diagrams are displayed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验