Suppr超能文献

通过数据扩充方案对多维四参数逻辑项目反应模型的吉布斯抽样器。

A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme.

机构信息

Department of Statistics, School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, China.

Key Laboratory for Applied Statistics of MOE, School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, China.

出版信息

Br J Math Stat Psychol. 2021 Nov;74(3):427-464. doi: 10.1111/bmsp.12234. Epub 2021 May 18.

Abstract

The four-parameter logistic (4PL) item response model, which includes an upper asymptote for the correct response probability, has drawn increasing interest due to its suitability for many practical scenarios. This paper proposes a new Gibbs sampling algorithm for estimation of the multidimensional 4PL model based on an efficient data augmentation scheme (DAGS). With the introduction of three continuous latent variables, the full conditional distributions are tractable, allowing easy implementation of a Gibbs sampler. Simulation studies are conducted to evaluate the proposed method and several popular alternatives. An empirical data set was analysed using the 4PL model to show its improved performance over the three-parameter and two-parameter logistic models. The proposed estimation scheme is easily accessible to practitioners through the open-source IRTlogit package.

摘要

四参数逻辑(4PL)项目反应模型,由于其适用于许多实际情况,包括正确反应概率的上限,因此越来越受到关注。本文提出了一种新的基于有效数据扩充方案(DAGS)的多维 4PL 模型估计的 Gibbs 抽样算法。通过引入三个连续的潜在变量,完全条件分布是可处理的,允许容易地实现 Gibbs 抽样器。进行了模拟研究来评估所提出的方法和几个流行的替代方法。使用 4PL 模型分析了一个实证数据集,以显示其在三参数和二参数逻辑模型上的改进性能。通过开源的 IRTlogit 包,向实践者提供了易于使用的估计方案。

相似文献

1
A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme.
Br J Math Stat Psychol. 2021 Nov;74(3):427-464. doi: 10.1111/bmsp.12234. Epub 2021 May 18.
2
Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model.
Front Psychol. 2020 Sep 18;11:2121. doi: 10.3389/fpsyg.2020.02121. eCollection 2020.
4
Revisiting the 4-Parameter Item Response Model: Bayesian Estimation and Application.
Psychometrika. 2016 Dec;81(4):1142-1163. doi: 10.1007/s11336-015-9477-6. Epub 2015 Sep 23.
5
Mixture-modelling-based Bayesian MH-RM algorithm for the multidimensional 4PLM.
Br J Math Stat Psychol. 2023 Nov;76(3):585-604. doi: 10.1111/bmsp.12300. Epub 2023 Feb 2.
6
An improved stochastic EM algorithm for large-scale full-information item factor analysis.
Br J Math Stat Psychol. 2020 Feb;73(1):44-71. doi: 10.1111/bmsp.12153. Epub 2018 Dec 3.
7
Latent variable sdelection in multidimensional item response theory models using the expectation model selection algorithm.
Br J Math Stat Psychol. 2022 May;75(2):363-394. doi: 10.1111/bmsp.12261. Epub 2021 Dec 17.
8
Marginalized maximum a posteriori estimation for the four-parameter logistic model under a mixture modelling framework.
Br J Math Stat Psychol. 2020 Nov;73 Suppl 1:51-82. doi: 10.1111/bmsp.12185. Epub 2019 Sep 25.
9
A Gibbs-INLA algorithm for multidimensional graded response model analysis.
Br J Math Stat Psychol. 2024 Feb;77(1):169-195. doi: 10.1111/bmsp.12321. Epub 2023 Sep 29.
10
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.
G3 (Bethesda). 2015 Aug 18;5(10):2113-26. doi: 10.1534/g3.115.021154.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验