Suppr超能文献

基于贝叶斯逻辑序贯回归的有序数据基因组预测

Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.

作者信息

Montesinos-López Osval A, Montesinos-López Abelardo, Crossa José, Burgueño Juan, Eskridge Kent

机构信息

Facultad de Telemática, Universidad de Colima, C.P. 28040 Colima, Colima, México.

Departamento de Estadística, Centro de Investigación en Matemáticas (CIMAT), 36240 Guanajuato, México.

出版信息

G3 (Bethesda). 2015 Aug 18;5(10):2113-26. doi: 10.1534/g3.115.021154.

Abstract

Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link.

摘要

到目前为止,大多数基于基因组的预测模型都假定响应变量是连续且呈正态分布的。例外的是为有序分类表型开发的概率单位模型。在统计应用中,由于贝叶斯概率单位序数回归(BPOR)模型易于实现,贝叶斯逻辑序数回归(BLOR)在基于基因组的预测(样本量(n)远小于参数数量(p))背景下很少被采用。因此,在本文中,我们提出一种使用波利亚 - 伽马数据增强方法的BLOR模型,该方法生成一个吉布斯采样器,其具有与BPOR模型相似的完全条件分布,并且具有BPOR模型是BLOR模型的一种特殊情况这一优势。我们通过模拟和两个真实数据集对所提出的模型进行了评估。结果表明,我们的BLOR模型是在基于基因组的预测背景下,使用概率单位或逻辑链接分析有序数据的一个很好的替代方法。

相似文献

1
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.
G3 (Bethesda). 2015 Aug 18;5(10):2113-26. doi: 10.1534/g3.115.021154.
2
Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction.
G3 (Bethesda). 2016 May 3;6(5):1165-77. doi: 10.1534/g3.116.028118.
3
A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.
G3 (Bethesda). 2017 Jun 7;7(6):1833-1853. doi: 10.1534/g3.117.041202.
4
A Bayesian Genomic Regression Model with Skew Normal Random Errors.
G3 (Bethesda). 2018 May 4;8(5):1771-1785. doi: 10.1534/g3.117.300406.
6
Genome-based prediction of Bayesian linear and non-linear regression models for ordinal data.
Plant Genome. 2020 Jul;13(2):e20021. doi: 10.1002/tpg2.20021. Epub 2020 May 14.
8
Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding.
G3 (Bethesda). 2014 Dec 23;5(2):291-300. doi: 10.1534/g3.114.016188.
9
Bayesian genomic-enabled prediction as an inverse problem.
G3 (Bethesda). 2014 Aug 25;4(10):1991-2001. doi: 10.1534/g3.114.013094.

引用本文的文献

1
Integrating and optimizing genomic, weather, and secondary trait data for multiclass classification.
Front Genet. 2023 Mar 29;13:1032691. doi: 10.3389/fgene.2022.1032691. eCollection 2022.
4
A semi-parametric Bayesian model for semi-continuous longitudinal data.
Stat Med. 2022 Jun 15;41(13):2354-2374. doi: 10.1002/sim.9359. Epub 2022 Mar 10.
5
Application of Genomic Big Data in Plant Breeding:Past, Present, and Future.
Plants (Basel). 2020 Oct 28;9(11):1454. doi: 10.3390/plants9111454.
6
Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry.
Gigascience. 2020 May 1;9(5). doi: 10.1093/gigascience/giaa030.
9
Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction.
G3 (Bethesda). 2016 May 3;6(5):1165-77. doi: 10.1534/g3.116.028118.

本文引用的文献

1
Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding.
G3 (Bethesda). 2014 Dec 23;5(2):291-300. doi: 10.1534/g3.114.016188.
2
Genome-wide regression and prediction with the BGLR statistical package.
Genetics. 2014 Oct;198(2):483-95. doi: 10.1534/genetics.114.164442. Epub 2014 Jul 9.
3
Priors in whole-genome regression: the bayesian alphabet returns.
Genetics. 2013 Jul;194(3):573-96. doi: 10.1534/genetics.113.151753. Epub 2013 May 1.
4
Bayesian methods for estimating GEBVs of threshold traits.
Heredity (Edinb). 2013 Mar;110(3):213-9. doi: 10.1038/hdy.2012.65. Epub 2012 Oct 31.
5
Sire evaluation for ordered categorical data with a threshold model.
Genet Sel Evol (1983). 1983;15(2):201-24. doi: 10.1186/1297-9686-15-2-201.
6
Genome-enabled prediction of genetic values using radial basis function neural networks.
Theor Appl Genet. 2012 Aug;125(4):759-71. doi: 10.1007/s00122-012-1868-9. Epub 2012 May 8.
7
A Bayesian antedependence model for whole genome prediction.
Genetics. 2012 Apr;190(4):1491-501. doi: 10.1534/genetics.111.131540. Epub 2011 Nov 30.
8
Accuracy of genome-wide evaluation for disease resistance in aquaculture breeding programs.
J Anim Sci. 2011 Nov;89(11):3433-42. doi: 10.2527/jas.2010-3814. Epub 2011 Jul 8.
9
Genome-wide prediction of discrete traits using Bayesian regressions and machine learning.
Genet Sel Evol. 2011 Feb 17;43(1):7. doi: 10.1186/1297-9686-43-7.
10
The use of transformations.
Biometrics. 1947 Mar;3(1):39-52.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验