Montesinos-López Osval A, Montesinos-López Abelardo, Crossa José, Burgueño Juan, Eskridge Kent
Facultad de Telemática, Universidad de Colima, C.P. 28040 Colima, Colima, México.
Departamento de Estadística, Centro de Investigación en Matemáticas (CIMAT), 36240 Guanajuato, México.
G3 (Bethesda). 2015 Aug 18;5(10):2113-26. doi: 10.1534/g3.115.021154.
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link.
到目前为止,大多数基于基因组的预测模型都假定响应变量是连续且呈正态分布的。例外的是为有序分类表型开发的概率单位模型。在统计应用中,由于贝叶斯概率单位序数回归(BPOR)模型易于实现,贝叶斯逻辑序数回归(BLOR)在基于基因组的预测(样本量(n)远小于参数数量(p))背景下很少被采用。因此,在本文中,我们提出一种使用波利亚 - 伽马数据增强方法的BLOR模型,该方法生成一个吉布斯采样器,其具有与BPOR模型相似的完全条件分布,并且具有BPOR模型是BLOR模型的一种特殊情况这一优势。我们通过模拟和两个真实数据集对所提出的模型进行了评估。结果表明,我们的BLOR模型是在基于基因组的预测背景下,使用概率单位或逻辑链接分析有序数据的一个很好的替代方法。