Shanghai Institute of AI for Education and Department of Educational Psychology of Faculty of Education, East China Normal University, Shanghai, China.
School of Educational Science, Liaocheng University, Liaocheng, China.
Br J Math Stat Psychol. 2023 Nov;76(3):585-604. doi: 10.1111/bmsp.12300. Epub 2023 Feb 2.
Several recent works have tackled the estimation issue for the unidimensional four-parameter logistic model (4PLM). Despite these efforts, the issue remains a challenge for the multidimensional 4PLM (M4PLM). Fu et al. (2021) proposed a Gibbs sampler for the M4PLM, but it is time-consuming. In this paper, a mixture-modelling-based Bayesian MH-RM (MM-MH-RM) algorithm is proposed for the M4PLM to obtain the maximum a posteriori (MAP) estimates. In a comparison of the MM-MH-RM algorithm to the original MH-RM algorithm, two simulation studies and an empirical example demonstrated that the MM-MH-RM algorithm possessed the benefits of the mixture-modelling approach and could produce more robust estimates with guaranteed convergence rates and fast computation. The MATLAB codes for the MM-MH-RM algorithm are available in the online appendix.
几项最近的研究都针对单维四参数逻辑模型(4PLM)的估计问题进行了探讨。尽管已经做了这些努力,但多维 4PLM(M4PLM)的问题仍然是一个挑战。Fu 等人(2021)提出了一种用于 M4PLM 的 Gibbs 抽样器,但它非常耗时。本文提出了一种基于混合建模的贝叶斯 MH-RM(MM-MH-RM)算法,用于 M4PLM 以获得最大后验(MAP)估计。在将 MM-MH-RM 算法与原始 MH-RM 算法进行比较时,两项模拟研究和一个实证示例表明,MM-MH-RM 算法具有混合建模方法的优势,可以产生更稳健的估计值,并保证收敛速度和快速计算。MM-MH-RM 算法的 MATLAB 代码可在在线附录中获得。