Suppr超能文献

基于混合模型的贝叶斯 MH-RM 算法在多维 4PLM 中的应用。

Mixture-modelling-based Bayesian MH-RM algorithm for the multidimensional 4PLM.

机构信息

Shanghai Institute of AI for Education and Department of Educational Psychology of Faculty of Education, East China Normal University, Shanghai, China.

School of Educational Science, Liaocheng University, Liaocheng, China.

出版信息

Br J Math Stat Psychol. 2023 Nov;76(3):585-604. doi: 10.1111/bmsp.12300. Epub 2023 Feb 2.

Abstract

Several recent works have tackled the estimation issue for the unidimensional four-parameter logistic model (4PLM). Despite these efforts, the issue remains a challenge for the multidimensional 4PLM (M4PLM). Fu et al. (2021) proposed a Gibbs sampler for the M4PLM, but it is time-consuming. In this paper, a mixture-modelling-based Bayesian MH-RM (MM-MH-RM) algorithm is proposed for the M4PLM to obtain the maximum a posteriori (MAP) estimates. In a comparison of the MM-MH-RM algorithm to the original MH-RM algorithm, two simulation studies and an empirical example demonstrated that the MM-MH-RM algorithm possessed the benefits of the mixture-modelling approach and could produce more robust estimates with guaranteed convergence rates and fast computation. The MATLAB codes for the MM-MH-RM algorithm are available in the online appendix.

摘要

几项最近的研究都针对单维四参数逻辑模型(4PLM)的估计问题进行了探讨。尽管已经做了这些努力,但多维 4PLM(M4PLM)的问题仍然是一个挑战。Fu 等人(2021)提出了一种用于 M4PLM 的 Gibbs 抽样器,但它非常耗时。本文提出了一种基于混合建模的贝叶斯 MH-RM(MM-MH-RM)算法,用于 M4PLM 以获得最大后验(MAP)估计。在将 MM-MH-RM 算法与原始 MH-RM 算法进行比较时,两项模拟研究和一个实证示例表明,MM-MH-RM 算法具有混合建模方法的优势,可以产生更稳健的估计值,并保证收敛速度和快速计算。MM-MH-RM 算法的 MATLAB 代码可在在线附录中获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验