Suppr超能文献

A Contour Co-Tracking Method for Image Pairs.

作者信息

Wang Bin, Tao Dapeng, Dong Rui, Tang Yuanyan, Gao Xinbo

出版信息

IEEE Trans Image Process. 2021;30:5402-5412. doi: 10.1109/TIP.2021.3079798. Epub 2021 Jun 7.

Abstract

We proposed a contour co-tracking method for co-segmentation of image pairs based on active contour model. Our method comprehensively re-models objects and backgrounds signified by level set functions, and leverages Hellinger distance to measure the similarity between image regions encoded by probability distributions. The main contribution are as follows. 1) The new energy functional, combining a rewarding and a penalty term, relaxes the assumptions of co-segmentation methods. 2) Hellinger distance, fulfilling the triangle inequality, ensures a coherence measurement between probability distributions in metric space, and contributes to finding a unique solution to the energy functional. The proposed contour co-tracking method was carefully verified against five representative methods on four popular datasets, i.e., the images pair dataset (105 pairs), MSRC dataset (30 pairs), iCoseg dataset (66 pairs) and Coseg-rep dataset (25 pairs). The comparison experiments suggest that our method achieves the competitive and even better performance compared to the state-of-the-art co-segmentation methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验