Suppr超能文献

DeepChargePredictor:一个通过最先进的机器学习算法预测基于 QM 的原子电荷的网络服务器。

DeepChargePredictor: a web server for predicting QM-based atomic charges via state-of-the-art machine-learning algorithms.

机构信息

School of Computer Science, Wuhan University, Wuhan 430072, China.

Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

出版信息

Bioinformatics. 2021 Nov 18;37(22):4255-4257. doi: 10.1093/bioinformatics/btab389.

Abstract

SUMMARY

High-level quantum mechanics (QM) methods are no doubt the most reliable approaches for the prediction of atomic charges, but it usually needs very large computational resources, which apparently hinders the use of high-quality atomic charges in large-scale molecular modeling, such as high-throughput virtual screening. To solve this problem, several algorithms based on machine-learning (ML) have been developed to fit high-level QM atomic charges. Here, we proposed DeepChargePredictor, a web server that is able to generate the high-level QM atomic charges for small molecules based on two state-of-the-art ML algorithms developed in our group, namely AtomPathDescriptor and DeepAtomicCharge. These two algorithms were seamlessly integrated into the platform with the capability to predict three kinds of charges (i.e. RESP, AM1-BCC and DDEC) widely used in structure-based drug design. Moreover, we have comprehensively evaluated the performance of these charges generated by DeepChargePredictor for large-scale drug design applications, such as end-point binding free energy calculations and virtual screening, which all show reliable or even better performance compared with the baseline methods.

AVAILABILITY AND IMPLEMENTATION

The data in the article can be obtained on the web page http://cadd.zju.edu.cn/deepchargepredictor/publication.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

高水平的量子力学(QM)方法无疑是预测原子电荷最可靠的方法,但通常需要非常大的计算资源,这显然阻碍了高质量原子电荷在大规模分子建模(如高通量虚拟筛选)中的应用。为了解决这个问题,已经开发了几种基于机器学习(ML)的算法来拟合高水平的 QM 原子电荷。在这里,我们提出了 DeepChargePredictor,这是一个基于我们小组开发的两种最先进的 ML 算法(即 AtomPathDescriptor 和 DeepAtomicCharge)的网页服务器,能够为小分子生成高水平的 QM 原子电荷。这两种算法已无缝集成到平台中,具有预测广泛用于基于结构的药物设计的三种电荷(即 RESP、AM1-BCC 和 DDEC)的能力。此外,我们还全面评估了 DeepChargePredictor 生成的这些电荷在大规模药物设计应用(如终点结合自由能计算和虚拟筛选)中的性能,与基线方法相比,所有这些都显示出可靠甚至更好的性能。

可用性和实现

文章中的数据可在网页 http://cadd.zju.edu.cn/deepchargepredictor/publication 上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验