Suppr超能文献

具有从头算神经网络动态电荷和自发电荷转移的可极化水模型

Polarizable Water Model with Ab Initio Neural Network Dynamic Charges and Spontaneous Charge Transfer.

作者信息

Liang Qiujiang, Yang Jun

机构信息

Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P.R. China.

Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P.R. China.

出版信息

J Chem Theory Comput. 2025 Apr 8;21(7):3360-3373. doi: 10.1021/acs.jctc.4c01448. Epub 2025 Mar 29.

Abstract

Simulating water accurately has been a challenge due to the complexity of describing polarization and intermolecular charge transfer. Quantum mechanical (QM) electronic structures provide an accurate description of polarization in response to local environments, which is nevertheless too expensive for large water systems. In this study, we have developed a polarizable water model integrating Charge Model 5 atomic charges at the level of the second-order Mo̷ller-Plesset perturbation theory, predicted by an accurate and transferable charge neural network (ChargeNN) model. The spontaneous intermolecular charge transfer has been explicitly accounted for, enabling a precise treatment of hydrogen bonds and out-of-plane polarization. Our ChargeNN water model successfully reproduces various properties of water in gas, liquid, and solid phases. For example, ChargeNN correctly captures the hydrogen-bond stretching peak and bending-libration combination band, which are absent in the spectra using fixed charges, highlighting the significance of accurate polarization and charge transfer. Finally, the molecular dynamical simulations using ChargeNN for liquid water and a large water droplet with a ∼4.5 nm radius reveal that the strong interfacial electric fields are concurrently induced by the partial collapse of the hydrogen-bond network and surface-to-interior charge transfer. Our study paves the way for QM-polarizable force fields, aiming for large-scale molecular simulations with high accuracy.

摘要

由于描述极化和分子间电荷转移的复杂性,精确模拟水一直是一项挑战。量子力学(QM)电子结构能够精确描述极化对局部环境的响应,然而对于大型水体系来说计算成本过高。在本研究中,我们开发了一种可极化水模型,该模型在二阶莫勒-普列斯特定理(Mo̷ller-Plesset perturbation theory)水平上整合了由精确且可转移的电荷神经网络(ChargeNN)模型预测的5号电荷模型原子电荷。明确考虑了自发的分子间电荷转移,从而能够精确处理氢键和面外极化。我们的ChargeNN水模型成功再现了水在气相、液相和固相中的各种性质。例如,ChargeNN正确捕捉到了氢键拉伸峰和弯曲-振动组合带,而在使用固定电荷的光谱中这些峰是不存在的,这突出了精确极化和电荷转移的重要性。最后,使用ChargeNN对液态水和半径约为4.5 nm的大水滴进行分子动力学模拟表明,氢键网络的部分坍塌和表面到内部的电荷转移同时诱导了强界面电场。我们的研究为QM可极化力场铺平了道路,旨在实现高精度的大规模分子模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d0a/11983713/fc466582745b/ct4c01448_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验