School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Org Lett. 2021 Jun 4;23(11):4411-4414. doi: 10.1021/acs.orglett.1c01351. Epub 2021 May 19.
Lone pair-π (LP-π) interactions between Lewis basic heteroatoms, such as oxygen and sulfur, and electron-deficient π systems are important noncovalent interactions. However, they have seldom been used to control catalyst-substrate interactions in catalysis. We performed density functional theory calculations to investigate the strengths of LP-π interactions between different lone pair donors and cationic π systems, and in different complexation geometries. Energy decomposition analysis calculations indicated that the dominant stabilizing force in LP-π complexes is electrostatic interaction and the electrostatic potential surface of the π system predicts the most favorable site for forming LP-π complexes. Benzotetramisole (BTM) is revealed as a privileged acyl transfer catalyst that promotes LP-π interactions because the positive charge of the acylated BTM is delocalized onto the dihydroimidazole ring, which binds strongly with a variety of oxygen and sulfur lone pair donors.
路易斯碱性杂原子(如氧和硫)与缺电子π 体系之间的孤对-π(LP-π)相互作用是重要的非共价相互作用。然而,它们很少被用于控制催化中的催化剂-底物相互作用。我们进行了密度泛函理论计算,以研究不同孤对给体与阳离子π 体系之间以及不同络合几何形状下 LP-π 相互作用的强度。能量分解分析计算表明,LP-π 配合物中的主要稳定力是静电相互作用,π 体系的静电势能表面预测了形成 LP-π 配合物的最有利位置。苯并四咪唑(BTM)被揭示为一种促进 LP-π 相互作用的特权酰基转移催化剂,因为酰化 BTM 的正电荷分散在二氢咪唑环上,与各种氧和硫孤对供体强烈结合。