Suppr超能文献

不同抽象层次上新兴面部分类的灵活性。

Flexibility of emerging face categorization at different levels of abstraction.

作者信息

Santo Miguel Granja Espírito, Wagemans Johan

机构信息

Department of Brain and Cognition, KU Leuven, Belgium.

出版信息

J Vis. 2021 May 3;21(5):22. doi: 10.1167/jov.21.5.22.

Abstract

Categorization of visual stimuli at different levels of abstraction relies on the encoding of relevant diagnostic features present at different spatial scales. We used the Eidolon Factory, an image-manipulation algorithm that introduces random disarray fields across spatial scales, to study how such a process flexibly combines perceptual information to perform successful categorization depending on task demands. Images of animal faces, human faces, and everyday objects were disarrayed coherently (random fields correlated) or incoherently (random fields randomized) to create a family of 50 eidolons per stimulus image with increasing disarray. Participants (N = 243) viewed each family of eidolons in a smooth sequence from maximum disarray to no disarray and performed a category verification task either at the superordinate (any face type) or basic (human face only) levels at two levels of uncertainty: participants in one group used their gut feeling to respond, whereas another group had to be sure of their decision. When participants used their gut feeling to respond, we observed a superordinate-level advantage. When they were sure of their response, we observed a basic-level advantage. Coherently disarrayed sequences impaired target detection compared to incoherently disarrayed sequences for both levels of response certainty. Furthermore, participants' sensitivity in the Any Face condition increased when they observed coherently disarrayed sequences and had to be sure of their response. These results suggest that the visual system does not strictly adhere to feedforward processing but flexibly adjusts to the relevant perceptual information depending on task context.

摘要

在不同抽象层次上对视觉刺激进行分类依赖于对不同空间尺度上存在的相关诊断特征的编码。我们使用了Eidolon Factory,这是一种图像处理算法,它在不同空间尺度上引入随机混乱场,以研究这样一个过程如何根据任务需求灵活地组合感知信息以成功进行分类。动物面孔、人类面孔和日常物体的图像被连贯地(随机场相关)或不连贯地(随机场随机化)打乱,为每个刺激图像创建一个包含50个幻像的系列,且混乱程度不断增加。参与者(N = 243)以从最大混乱到无混乱的平滑序列观看每个幻像系列,并在两个不确定水平上执行上级(任何面部类型)或基本(仅人类面孔)水平的类别验证任务:一组参与者凭直觉做出反应,而另一组则必须对自己的决定有把握。当参与者凭直觉做出反应时,我们观察到上级水平优势。当他们对自己的反应有把握时,我们观察到基本水平优势。对于两种反应确定性水平,与不连贯打乱的序列相比,连贯打乱的序列损害了目标检测。此外,当参与者观察到连贯打乱的序列并且必须对自己的反应有把握时,他们在“任何面孔”条件下的敏感性会增加。这些结果表明,视觉系统并不严格遵循前馈处理,而是根据任务背景灵活地调整以适应相关的感知信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bcd/8142708/3bb8f2ece1a3/jovi-21-5-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验