Kazdal Daniel, Rempel Eugen, Oliveira Cristiano, Allgäuer Michael, Harms Alexander, Singer Kerstin, Kohlwes Elke, Ormanns Steffen, Fink Ludger, Kriegsmann Jörg, Leichsenring Michael, Kriegsmann Katharina, Stögbauer Fabian, Tavernar Luca, Leichsenring Jonas, Volckmar Anna-Lena, Longuespée Rémi, Winter Hauke, Eichhorn Martin, Heußel Claus Peter, Herth Felix, Christopoulos Petros, Reck Martin, Muley Thomas, Weichert Wilko, Budczies Jan, Thomas Michael, Peters Solange, Warth Arne, Schirmacher Peter, Stenzinger Albrecht, Kriegsmann Mark
Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany.
Transl Lung Cancer Res. 2021 Apr;10(4):1666-1678. doi: 10.21037/tlcr-20-1168.
Targeted genetic profiling of tissue samples is paramount to detect druggable genetic aberrations in patients with non-squamous non-small cell lung cancer (NSCLC). Accurate upfront estimation of tumor cell content (TCC) is a crucial pre-analytical step for reliable testing and to avoid false-negative results. As of now, TCC is usually estimated on hematoxylin-eosin (H&E) stained tissue sections by a pathologist, a methodology that may be prone to substantial intra- and interobserver variability. Here we the investigate suitability of digital pathology for TCC estimation in a clinical setting by evaluating the concordance between semi-automatic and conventional TCC quantification.
TCC was analyzed in 120 H&E and thyroid transcription factor 1 (TTF-1) stained high-resolution images by 19 participants with different levels of pathological expertise as well as by applying two semi-automatic digital pathology image analysis tools (HALO and QuPath).
Agreement of TCC estimations [intra-class correlation coefficients (ICC)] between the two software tools (H&E: 0.87; TTF-1: 0.93) was higher compared to that between conventional observers (0.48; 0.47). Digital TCC estimations were in good agreement with the average of human TCC estimations (0.78; 0.96). Conventional TCC estimators tended to overestimate TCC, especially in H&E stainings, in tumors with solid patterns and in tumors with an actual TCC close to 50%.
Our results determine factors that influence TCC estimation. Computer-assisted analysis can improve the accuracy of TCC estimates prior to molecular diagnostic workflows. In addition, we provide a free web application to support self-training and quality improvement initiatives at other institutions.
对组织样本进行靶向基因分析对于检测非鳞状非小细胞肺癌(NSCLC)患者中可靶向治疗的基因畸变至关重要。准确预先估计肿瘤细胞含量(TCC)是进行可靠检测并避免假阴性结果的关键分析前步骤。目前,TCC通常由病理学家在苏木精-伊红(H&E)染色的组织切片上进行估计,这种方法可能存在较大的观察者内和观察者间差异。在此,我们通过评估半自动和传统TCC定量之间的一致性,研究数字病理学在临床环境中用于TCC估计的适用性。
19名具有不同病理专业水平的参与者对120张H&E和甲状腺转录因子1(TTF-1)染色的高分辨率图像进行TCC分析,并应用两种半自动数字病理学图像分析工具(HALO和QuPath)。
与传统观察者之间的一致性(H&E:0.48;TTF-1:0.47)相比,两种软件工具之间的TCC估计一致性[组内相关系数(ICC)]更高(H&E:0.87;TTF-1:0.93)。数字TCC估计与人类TCC估计的平均值高度一致(0.78;0.96)。传统TCC估计者往往高估TCC,尤其是在H&E染色、实性模式肿瘤以及实际TCC接近50%的肿瘤中。
我们的结果确定了影响TCC估计的因素。计算机辅助分析可提高分子诊断工作流程之前TCC估计的准确性。此外,我们提供了一个免费的网络应用程序,以支持其他机构的自我培训和质量改进计划。