Suppr超能文献

利用深度学习评估结直肠癌肿瘤纯度及其对分子分析的影响

Tumour purity assessment with deep learning in colorectal cancer and impact on molecular analysis.

作者信息

Schoenpflug Lydia A, Chatzipli Aikaterini, Sirinukunwattana Korsuk, Richman Susan, Blake Andrew, Robineau James, Mertz Kirsten D, Verrill Clare, Leedham Simon J, Hardy Claire, Whalley Celina, Redmond Keara, Dunne Philip, Walker Steven, Beggs Andrew D, McDermott Ultan, Murray Graeme I, Samuel Leslie M, Seymour Matthew, Tomlinson Ian, Quirke Philip, Rittscher Jens, Maughan Tim, Domingo Enric, Koelzer Viktor H

机构信息

Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland.

Wellcome Sanger Institute, Hinxton, UK.

出版信息

J Pathol. 2025 Feb;265(2):184-197. doi: 10.1002/path.6376. Epub 2024 Dec 22.

Abstract

Tumour content plays a pivotal role in directing the bioinformatic analysis of molecular profiles such as copy number variation (CNV). In clinical application, tumour purity estimation (TPE) is achieved either through visual pathological review [conventional pathology (CP)] or the deconvolution of molecular data. While CP provides a direct measurement, it demonstrates modest reproducibility and lacks standardisation. Conversely, deconvolution methods offer an indirect assessment with uncertain accuracy, underscoring the necessity for innovative approaches. SoftCTM is an open-source, multiorgan deep-learning (DL) model for the detection of tumour and non-tumour cells in H&E-stained slides, developed within the Overlapped Cell on Tissue Dataset for Histopathology (OCELOT) Challenge 2023. Here, using three large multicentre colorectal cancer (CRC) cohorts (N = 1,097 patients) with digital pathology and multi-omic data, we compare the utility and accuracy of TPE with SoftCTM versus CP and bioinformatic deconvolution methods (RNA expression, DNA methylation) for downstream molecular analysis, including CNV profiling. SoftCTM showed technical repeatability when applied twice on the same slide (r = 1.0) and excellent correlations in paired H&E slides (r > 0.9). TPEs profiled by SoftCTM correlated highly with RNA expression (r = 0.59) and DNA methylation (r = 0.40), while TPEs by CP showed a lower correlation with RNA expression (r = 0.41) and DNA methylation (r = 0.29). We show that CP and deconvolution methods respectively underestimate and overestimate tumour content compared to SoftCTM, resulting in 6-13% differing CNV calls. In summary, TPE with SoftCTM enables reproducibility, automation, and standardisation at single-cell resolution. SoftCTM estimates (M = 58.9%, SD ±16.3%) reconcile the overestimation by molecular data extrapolation (RNA expression: M = 79.2%, SD ±10.5, DNA methylation: M = 62.7%, SD ±11.8%) and underestimation by CP (M = 35.9%, SD ±13.1%), providing a more reliable middle ground. A fully integrated computational pathology solution could therefore be used to improve downstream molecular analyses for research and clinics. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

摘要

肿瘤含量在指导分子谱(如拷贝数变异,CNV)的生物信息学分析中起着关键作用。在临床应用中,肿瘤纯度估计(TPE)可通过视觉病理检查[传统病理学(CP)]或分子数据反卷积来实现。虽然CP提供了直接测量,但它的可重复性一般且缺乏标准化。相反,反卷积方法提供的是间接评估,准确性不确定,这凸显了创新方法的必要性。SoftCTM是一种开源的多器官深度学习(DL)模型,用于在苏木精和伊红(H&E)染色切片中检测肿瘤细胞和非肿瘤细胞,它是在2023年组织病理学重叠细胞数据集(OCELOT)挑战赛中开发的。在此,我们使用三个大型多中心结直肠癌(CRC)队列(N = 1097例患者)的数字病理和多组学数据,比较了SoftCTM与CP以及生物信息学反卷积方法(RNA表达、DNA甲基化)在下游分子分析(包括CNV分析)中的实用性和准确性。SoftCTM在同一张切片上应用两次时显示出技术可重复性(r = 1.0),在配对的H&E切片中具有出色的相关性(r > 0.9)。SoftCTM分析的TPE与RNA表达(r = 0.59)和DNA甲基化(r = 0.40)高度相关,而CP分析的TPE与RNA表达(r = 0.41)和DNA甲基化(r = 0.29)的相关性较低。我们发现,与SoftCTM相比,CP和反卷积方法分别低估和高估了肿瘤含量,导致CNV调用结果相差6 - 13%。总之,使用SoftCTM进行TPE能够在单细胞分辨率下实现可重复性、自动化和标准化。SoftCTM估计值(M = 58.9%,标准差±16.3%)调和了分子数据外推法(RNA表达:M = 79.2%,标准差±10.5,DNA甲基化:M = 62.7%,标准差±11.8%)的高估和CP(M = 35.9%,标准差±13.1%)的低估,提供了一个更可靠的中间值。因此,一个完全集成的计算病理学解决方案可用于改善研究和临床的下游分子分析。© 2024作者。《病理学杂志》由约翰·威利父子有限公司代表大不列颠及爱尔兰病理学会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6744/11717495/2af4bac55059/PATH-265-184-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验