Department of Mathematical Sciences, Northern Illinois University, 1425 Lincoln Highway, DeKalb, IL, USA.
Theory Biosci. 2021 Jun;140(2):205-223. doi: 10.1007/s12064-021-00345-7. Epub 2021 May 20.
A stochastic differential game theoretic model has been proposed to determine optimal behavior of a fish while migrating against water currents both in rivers and oceans. Then, a dynamic objective function is maximized subject to two stochastic dynamics, one represents its location and another its relative velocity against water currents. In relative velocity stochastic dynamics, a Cucker-Smale type stochastic differential equation is introduced under white noise. As the information regarding hydrodynamic environment is incomplete and imperfect, a Feynman type path integral under [Formula: see text] Liouville-like quantum gravity surface has been introduced to obtain a Wick-rotated Schrödinger type equation to determine an optimal strategy of a fish during its migration. The advantage of having Feynman type path integral is that, it can be used in more generalized nonlinear stochastic differential equations where constructing a Hamiltonian-Jacobi-Bellman (HJB) equation is impossible. The mathematical analytic results show exact expression of an optimal strategy of a fish under imperfect information and uncertainty.
已经提出了一种随机微分博弈理论模型,以确定鱼类在河流和海洋中逆流迁徙时的最佳行为。然后,最大化一个动态目标函数,该函数受到两个随机动力学的约束,一个表示其位置,另一个表示其相对于水流的相对速度。在相对速度随机动力学中,在白噪声下引入了一种 Cucker-Smale 型随机微分方程。由于有关水动力环境的信息不完整和不完善,引入了费曼型路径积分[Formula: see text]李奥维尔型量子引力曲面下,以获得一个 Wick 旋转的薛定谔型方程,以确定鱼类在迁徙过程中的最佳策略。具有费曼型路径积分的优点是,它可以用于更广义的非线性随机微分方程中,在这些方程中,构建哈密顿-雅可比-贝尔曼(HJB)方程是不可能的。数学分析结果显示了在不完美信息和不确定性下鱼类最佳策略的精确表达式。