Jeon Jun-Young, Park Sang-Joon, Ha Tae-Jun
Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):25082-25091. doi: 10.1021/acsami.1c03283. Epub 2021 May 20.
Microwave-assisted functionalization of zinc oxide nanoflowers (ZnO NFs) with palladium nanoparticles (Pd NPs) is demonstrated to realize high-performance chemiresistive-type hydrogen (H) gas sensors operating at room temperature (RT). The developed gas sensors exhibit a high response of up to 70% at 50 ppm and a theoretical detection limit of 10 ppb. The formation of ZnO NFs with an enhanced specific surface area and their functionalization with Pd NPs are investigated through various characterizations. Furthermore, the optimization of microwave absorption upon the structural incorporations between nanostructures (NF-NPs) is investigated for solution-based functionalization at low temperatures (below 120 °C) for short process times (within 1 min), compared to the conventional thermal annealing at 250 °C for 1 h. Highly sensitive and selective ZnO-based gas sensors enabling the detection of H gas molecules at 300 ppb concentration at RT exhibit a short response/recovery time of below 3 min and a good selectivity toward different gases including nitric oxide, carbon monoxide, and oxygen. The successful functionalization of nanostructured metal oxide semiconductors (MOSs) with metal NPs via effective and practical microwave absorption enhances the potential on highly sensitive and selective chemiresistive-type MOS-based gas sensors operating at RT without additional heaters or photogenerators.
通过微波辅助用钯纳米颗粒(Pd NPs)对氧化锌纳米花(ZnO NFs)进行功能化,实现了在室温(RT)下工作的高性能化学电阻型氢气(H)气体传感器。所开发的气体传感器在50 ppm时表现出高达70%的高响应率,理论检测限为10 ppb。通过各种表征手段研究了具有增强比表面积的ZnO NFs的形成及其与Pd NPs的功能化。此外,与在250°C下进行1小时的传统热退火相比,研究了在低温(低于120°C)下短处理时间(1分钟内)基于溶液的功能化中纳米结构(NF-NPs)之间结构结合时微波吸收的优化。在室温下能够检测浓度为300 ppb的H气体分子的高灵敏度和选择性的基于ZnO的气体传感器,其响应/恢复时间短于3分钟,并且对包括一氧化氮、一氧化碳和氧气在内的不同气体具有良好的选择性。通过有效且实用的微波吸收,金属纳米颗粒对纳米结构金属氧化物半导体(MOSs)的成功功能化增强了基于MOS的高灵敏度和选择性化学电阻型气体传感器在室温下无需额外加热器或光发生器即可工作的潜力。