Department of Psychology.
Emotion. 2022 Dec;22(8):1815-1827. doi: 10.1037/emo0000956. Epub 2021 May 20.
Affective phenomena have noteworthy complexity and heterogeneity-shared experiences and emotions evoke distinct responses and risk for affective problems across individuals (e.g., higher rates in women than men). Yet by averaging across individuals, affective science research traditionally treats affect as homogenous. Directly modeling person-specific heterogeneity in affective complexity (AC)-like the granularity and covariation of affective experiences-is paramount for identifying shared (i.e., common; nomothetic) and/or unshared (i.e., personal; idiographic) features of AC. The present study applied a person-specific technique to capture heterogeneity in daily affect and risk for affective problems in men and women and leveraged personalized results to improve general understanding of AC. Young adults ( = 56; 25 female) reported affect on each of 75 days of an intensive longitudinal study. AC was modeled using p-technique (i.e., person-specific factor analysis), and its utility over traditional, between-person models of affect (i.e., bivariate positive and negative affect) was compared for prediction of risk for affective problems in women compared to men. A community detection network algorithm was then applied to estimate person-specific AC to develop an idiographically informed nomothetic model of AC. Person-specific analyses detected wide variation in AC across individuals (i.e., range of 2-8 factors). Relative to the traditional bivariate model, idiographic models had incremental utility for differentiating risk for affective problems by gender. Nomothetic review of idiographic results (via community detection) revealed distinct dynamics in positive and negative affect networks. Person-specific science holds particular promise for mapping heterogeneity in AC and uncovering risk pathways for affective problems. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
情感现象具有显著的复杂性和异质性——共同的体验和情感在个体之间引发了不同的反应和情感问题风险(例如,女性的发生率高于男性)。然而,情感科学研究传统上通过对个体进行平均处理,将情感视为同质的。直接对情感复杂性的个体特异性进行建模(例如,情感体验的粒度和变化)对于识别情感复杂性的共同(即常见;公度论)和/或独特(即个人;特质论)特征至关重要。本研究应用了一种个体特异性技术来捕捉男性和女性日常情感的异质性和情感问题的风险,并利用个性化的结果来提高对情感复杂性的总体理解。青年成年人(n=56;女性 25 名)在一项密集的纵向研究中的 75 天内每天报告情感。使用 p 技术(即个体特异性因素分析)对情感复杂性进行建模,并将其与传统的个体间情感模型(即双变量积极和消极情感)进行比较,以预测女性和男性的情感问题风险。然后应用社区检测网络算法来估计个体特异性情感复杂性,以开发情感复杂性的特质论-公度论模型。个体特异性分析检测到个体之间情感复杂性的广泛变化(即,2-8 个因素的范围)。与传统的双变量模型相比,特质论模型在区分性别情感问题风险方面具有额外的效用。通过社区检测对特质论结果进行的公度论综述揭示了积极和消极情感网络中的不同动态。个体特异性科学特别有希望用于绘制情感复杂性的异质性,并揭示情感问题的风险途径。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。