Suppr超能文献

RNA二级结构局部上下文的注释改善了A-小沟的分类和预测。

Annotation of the local context of the RNA secondary structure improves the classification and prediction of A-minors.

作者信息

Shalybkova Anna A, Mikhailova Darya S, Kulakovskiy Ivan V, Fakhranurova Liliia I, Baulin Eugene F

机构信息

Lomonosov Moscow State University.

Moscow Institute of Physics and Technology.

出版信息

RNA. 2021 May 20;27(8):907-19. doi: 10.1261/rna.078535.120.

Abstract

Non-coding RNAs play a crucial role in various cellular processes in living organisms, and RNA functions heavily depend on molecule structures composed of stems, loops, and various tertiary motifs. Among those, the most frequent are A-minor interactions, which are often involved in the formation of more complex motifs such as kink-turns and pseudoknots. We present a novel classification of A-minors in terms of RNA secondary structure where each nucleotide of an A-minor is attributed to the stem or loop, and each pair of nucleotides is attributed to their relative position within the secondary structure. By analyzing classes of A-minors in known RNA structures, we found that the largest classes are mostly homogeneous and preferably localize with known A-minor co-motifs, e.g. tetraloop-tetraloop receptor and coaxial stacking. Detailed analysis of local A-minors within internal loops revealed a novel recurrent RNA tertiary motif, the across-bulged motif. Interestingly, the motif resembles the previously known GAAA/11nt motif but with the local adenines performing the role of the GAAA-tetraloop. By using machine learning, we show that particular classes of local A-minors can be predicted from sequence and secondary structure. The proposed classification is the first step toward automatic annotation of not only A-minors and their co-motifs but various types of RNA tertiary motifs as well.

摘要

非编码RNA在生物体的各种细胞过程中发挥着关键作用,并且RNA的功能在很大程度上依赖于由茎、环和各种三级基序组成的分子结构。其中,最常见的是A- minor相互作用,其常常参与更复杂基序的形成,如扭结转弯和假结。我们根据RNA二级结构提出了一种新的A- minor分类方法,其中A- minor的每个核苷酸都被归为茎或环,并且每对核苷酸都被归为它们在二级结构中的相对位置。通过分析已知RNA结构中的A- minor类别,我们发现最大的类别大多是同质的,并且最好与已知的A- minor共基序定位在一起,例如四环-四环受体和同轴堆积。对内部环内局部A- minor的详细分析揭示了一种新的重复RNA三级基序,即跨凸起基序。有趣的是,该基序类似于先前已知的GAAA/11nt基序,但局部腺嘌呤发挥着GAAA四环的作用。通过使用机器学习,我们表明可以从序列和二级结构预测特定类别的局部A- minor。所提出的分类不仅是对A- minor及其共基序进行自动注释的第一步,也是对各种类型的RNA三级基序进行自动注释的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e394/8284323/5985b48ad8d9/907f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验