Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
University Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
Science. 2021 Jun 18;372(6548):1314-1318. doi: 10.1126/science.abf8107. Epub 2021 May 20.
In heterogeneous catalysis research, the reactivity of individual nanofacets of single particles is typically not resolved. We applied in situ field electron microscopy to the apex of a curved rhodium crystal (radius of 650 nanometers), providing high spatial (2 nanometers) and time resolution (2 milliseconds) of oscillatory catalytic hydrogen oxidation, to image adsorbed species and reaction fronts on the individual facets. Using ionized water as the imaging species, the active sites were directly imaged with field ion microscopy. The catalytic behavior of differently structured nanofacets and the extent of coupling between them were monitored individually. We observed limited interfacet coupling, entrainment, frequency locking, and reconstruction-induced collapse of spatial coupling. The experimental results are backed up by microkinetic modeling of time-dependent oxygen species coverages and oscillation frequencies.
在多相催化研究中,通常无法分辨单个粒子的各个纳米面的反应活性。我们应用原位场电子显微镜对一个弯曲的铑晶体(半径 650 纳米)的顶点进行了研究,该方法具有高空间分辨率(约 2 纳米)和时间分辨率(约 2 毫秒),可对单个晶面上的吸附物种和反应前沿进行成像。使用离子化水作为成像物质,通过场离子显微镜可以直接对活性位进行成像。我们可以分别监测不同结构纳米面的催化行为以及它们之间的耦合程度。我们观察到界面耦合、夹带、频率锁定以及重构引起的空间耦合崩溃的程度有限。实验结果得到了基于时间相关氧物种覆盖度和振荡频率的微动力学模型的支持。