Alonso G
Laboratoire de Neurobiologie Endocrinologique, UA 1197 du C.N.R.S., Université de Montpellier II, France.
Brain Res. 1988 Jun 21;453(1-2):191-203. doi: 10.1016/0006-8993(88)90158-8.
The effects of colchicine on neurosecretory neurons of the rat hypothalamus were studied by immunocytochemistry, high-resolution radioautography, and conventional electron microscopy. In control rats, intraneuronal immunocytochemical labeling of vasopressin, oxytocin and somatostatin occurred essentially in the Golgi apparatus, the neurosecretory granules and to a lesser extent, the endoplasmic reticulum. These immunostaining patterns were dramatically modified 24 h after the administration of colchicine: immunoreactive peptides were located in granular or tubular structures accumulated at the periphery of the perikarya, but the Golgi stacks were not immunostained. Two h after the administration of tritiated leucine, quantitative analysis of radioautographic labeling of supraoptic perikarya revealed large amounts of radioactive protein in the Golgi saccules of neurosecretory neurons in control rats, but in the neurons of colchicine-treated rats, radioautographic labeling was mainly located in granular structures accumulated at the periphery of the perikarya, with no significant labeling on the Golgi stacks. Lastly, 3 noteworthy effects of colchicine on the ultrastructural morphological features of these neurosecretory neurons consisted in: (1) a dramatic disorganization of the Golgi complexes, (2) an accumulation of electron-dense proteic material within the lumen of cisternae of both the rough and smooth endoplasmic reticulum and, (3) a marked depolymerization of perikaryal microtubules, specifically those associated with the Golgi stacks. Taken together, these data do not fit the prevailing concept that the colchicine-induced accumulation of secretory material within the perikarya of neurosecretory neurons essentially results from the blockade of axoplasmic transport mechanisms. Instead, they support the idea that the effects of colchicine are related to the inhibition of the intraneuronal transport of newly synthesized secretory material from the endoplasmic reticulum to the Golgi apparatus, suggesting that the microtubules associated with the Golgi stacks are possible sites of colchicine action.
通过免疫细胞化学、高分辨率放射自显影术和传统电子显微镜技术,研究了秋水仙碱对大鼠下丘脑神经分泌神经元的影响。在对照大鼠中,血管加压素、催产素和生长抑素的神经元内免疫细胞化学标记主要出现在高尔基体、神经分泌颗粒中,在内质网中的标记程度较轻。在给予秋水仙碱24小时后,这些免疫染色模式发生了显著改变:免疫反应性肽位于核周体周边积累的颗粒状或管状结构中,但高尔基体堆叠未被免疫染色。在给予氚标记的亮氨酸2小时后,对视上核周体放射自显影标记的定量分析显示,对照大鼠神经分泌神经元的高尔基小泡中有大量放射性蛋白,但在秋水仙碱处理的大鼠神经元中,放射自显影标记主要位于核周体周边积累的颗粒状结构中,高尔基体堆叠上无明显标记。最后,秋水仙碱对这些神经分泌神经元超微结构形态特征有3个值得注意的影响:(1)高尔基体复合体严重紊乱;(2)粗面和滑面内质网池腔内电子致密蛋白质物质积累;(3)核周微管,特别是与高尔基体堆叠相关的微管明显解聚。综上所述,这些数据不符合目前流行的观点,即秋水仙碱诱导神经分泌神经元核周体内分泌物质的积累主要是由于轴浆运输机制受阻。相反,它们支持这样一种观点,即秋水仙碱的作用与抑制新合成的分泌物质从内质网到高尔基体的神经元内运输有关,这表明与高尔基体堆叠相关的微管可能是秋水仙碱的作用位点。